14.已知tan2θ=-2$\sqrt{2}$,π<2θ<2π,化簡$\frac{2co{s}^{2}θ-sinθ-1}{\sqrt{2}sin(θ+\frac{π}{4})}$=3+2$\sqrt{2}$.

分析 通過正切的倍角公式根據(jù)tan2θ求出tanθ的值;先用正弦兩角和公式對原式進(jìn)行化簡,再tanθ代入即可得到答案.

解答 解:tan2θ=$\frac{2tanθ}{1-{tan}^{2}θ}$=-2$\sqrt{2}$,即$\sqrt{2}$tan2θ-tanθ-$\sqrt{2}$=0,
又∵π<2θ<2π,可得$\frac{π}{2}$<θ<π,∴tanθ=$-\frac{\sqrt{2}}{2}$,
$\frac{2co{s}^{2}\frac{θ}{2}-sinθ-1}{\sqrt{2}sin(θ+\frac{π}{4})}$=$\frac{cosθ-sinθ}{sinθ+cosθ}$=$\frac{1-tanθ}{1+tanθ}$=$\frac{1+\frac{\sqrt{2}}{2}}{1-\frac{\sqrt{2}}{2}}$=$\frac{2+\sqrt{2}}{2-\sqrt{2}}$=3+$\sqrt{2}$.
故答案為:3+2$\sqrt{2}$.

點(diǎn)評 本題主要考查三角函數(shù)中的兩角和公式運(yùn)用,在求tanθ的過程中,要注意定義域,屬中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,在四棱錐P-ABCD中,AB⊥PA,AB∥CD,且PB=BC=BD=$\sqrt{6}$,CD=2AB=2$\sqrt{2}$,∠PAD=120°,E和F分別是棱CD和PC的中點(diǎn).
(1)求證:平面BEF⊥平面PCD;
(2)求直線PD與平面PBC所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.等腰Rt△ABC的斜邊AB所在的直線方程是3x-y+2=0,C($\frac{14}{5}$,$\frac{2}{5}$),求直線AC和直線BC的方程和△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.三角形ABC中,sinBcosC=1-cosBsinC,三角形ABC的形狀為直角三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|<π)的圖象如圖所示,則f($\frac{5π}{12}$)=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知{an}為等差數(shù)列,a2=6,a6=18,數(shù)列{cn}滿足cn+1=2cn+1且c1=0,而bn=cn+1.
(1)求{an}和{bn}的通項(xiàng)公式;
(2)設(shè){an}的前n項(xiàng)和為Sn,dn=Sncos($\frac{{a}_{n}}{3}$π)(n∈N*),求{dn}的前18項(xiàng)和T18

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知$\overrightarrow{a}$=(-$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),$\overrightarrow{OA}$=$\overrightarrow{a}$-$\overrightarrow$,$\overrightarrow{OB}$=$\overrightarrow{a}$+$\overrightarrow$,若△AOB是以O(shè)為直角頂點(diǎn)的等腰直角三角形,則$\overrightarrow$=($\frac{\sqrt{3}}{2},\frac{1}{2}$)或(-$\frac{\sqrt{3}}{2}$,-$\frac{1}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.非零向量$\overrightarrow{a}$、$\overrightarrow$滿足$\sqrt{3}$|$\overrightarrow{a}$|=|$\overrightarrow{a}$+$\overrightarrow$|=|$\overrightarrow{a}$-$\overrightarrow$|,則向量$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow$-$\overrightarrow{a}$夾角的余弦值為( 。
A.$\frac{1}{3}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{3}}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=2sin($\frac{1}{2}$x+$\frac{π}{3}$),求:
(1)函數(shù)f(x)最小正周期;
(2)函數(shù)f(x)的單調(diào)遞增區(qū)間;
(3)函數(shù)f(x)取最大值x的集合及f(x)的最大值.

查看答案和解析>>

同步練習(xí)冊答案