分析 作出不等式對(duì)應(yīng)的平面區(qū)域,利用z的幾何意義確定取得最小值的條件,然后利用基本不等式進(jìn)行求ab的值與z的最大值.
解答 解:由z=ax+by(a>0,b>0)得$y=-\frac{a}x+\frac{z}$,
∵a>0,b>0,
∴直線的斜率$-\frac{a}<0$,
作出不等式對(duì)應(yīng)的平面區(qū)域如圖:
平移直線得$y=-\frac{a}x+\frac{z}$,由圖象可知當(dāng)直線$y=-\frac{a}x+\frac{z}$經(jīng)過點(diǎn)A時(shí),直線$y=-\frac{a}x+\frac{z}$的截距最小,此時(shí)z最。
由$\left\{\begin{array}{l}{x=2}\\{y=x+1}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=2}\\{y=3}\end{array}\right.$,即A(2,3),
此時(shí)目標(biāo)函數(shù)z=ax+by(a>0,b>0)的最小值為2,
即2a+3b=2,∴2=2a+3b$≥2\sqrt{6ab}$,
即ab≤$\frac{1}{6}$,
當(dāng)且僅當(dāng)2a=3b=1,即a=$\frac{1}{2}$,b=$\frac{1}{3}$時(shí)取等號(hào).
故ab的最大值為$\frac{1}{6}$,z無最大值.
點(diǎn)評(píng) 本題主要考查線性規(guī)劃的基本應(yīng)用,以及基本不等式的應(yīng)用,利用數(shù)形結(jié)合求出目標(biāo)函數(shù)取得最大值的條件是解決本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (5n-1)2 | B. | 52n-1 | C. | $\frac{2}{3}$(52n+1+1) | D. | $\frac{2}{3}$(52n-1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -i | B. | -1 | C. | i | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{2}$ | B. | 2 | C. | $\frac{5}{2}$ | D. | 3 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com