15.已知數(shù)列{an} 通項(xiàng)公式為an=Atn-1+Bn+1,其中A,B,t 為常數(shù),且t>1,n∈N*.等式(x2+2x+2)10=b0+b1(x+1)+b2(x+1)2+…+b20(x+1)20,其中bi(i=0,1,2,…,20)為實(shí)常數(shù).
(1)若A=0,B=1,求$\sum_{n=1}^{10}{{a_n}{b_{2n}}}$ 的值;
(2)若A=1,B=0,是否存在常數(shù)t 使得$\sum_{n=1}^{10}{({2{a_n}-{2^n}}){b_{2n}}}$=2046?若存在,求常數(shù)t 的值,若不存在,說明理由.

分析 (1)A=0,B=1,an=n+1.(x2+2x+2)10=[(x+1)2+1]10=1+${∁}_{10}^{1}(x+1)^{2}$+${∁}_{10}^{2}(x+1)^{4}$+…+${∁}_{10}^{9}$(x+1)18+(x+1)20.與等式(x2+2x+2)10=b0+b1(x+1)+b2(x+1)2+…+b20(x+1)20,比較,其中bi(i=0,1,2,…,20)為實(shí)常數(shù).可得b2n=${∁}_{10}^{n}$.因此$\sum_{n=1}^{10}{{a_n}{b_{2n}}}$=2${∁}_{10}^{1}$+$3{∁}_{10}^{2}$+…+10${∁}_{10}^{9}$+11${∁}_{10}^{10}$=${∁}_{10}^{1}$+$2{∁}_{10}^{2}$+…+$10{∁}_{10}^{10}$+${∁}_{10}^{1}+{∁}_{10}^{2}$+…+${∁}_{10}^{10}$=${∁}_{10}^{1}$+$2{∁}_{10}^{2}$+…+$10{∁}_{10}^{10}$+210-1.由(x+1)10=1+${∁}_{10}^{1}x$+${∁}_{10}^{2}{x}^{2}$+…+${∁}_{10}^{10}{x}^{10}$,兩邊求導(dǎo)可得:10(x+1)9=${∁}_{10}^{1}$+$2{∁}_{10}^{2}$x+…+$10{∁}_{10}^{10}$x9,令x=1可得:$2{∁}_{10}^{2}$+…+$10{∁}_{10}^{10}$,進(jìn)而得出.
(2)A=1,B=0,an=tn-1+1.存在常數(shù)t=2使得$\sum_{n=1}^{10}{({2{a_n}-{2^n}}){b_{2n}}}$=2046.代入驗(yàn)證即可得出.

解答 解:(1)A=0,B=1,an=n+1.
(x2+2x+2)10=[(x+1)2+1]10=1+${∁}_{10}^{1}(x+1)^{2}$+${∁}_{10}^{2}(x+1)^{4}$+…+${∁}_{10}^{9}$(x+1)18+(x+1)20
又等式(x2+2x+2)10=b0+b1(x+1)+b2(x+1)2+…+b20(x+1)20,其中bi(i=0,1,2,…,20)為實(shí)常數(shù).可得b2n=${∁}_{10}^{n}$.
∴$\sum_{n=1}^{10}{{a_n}{b_{2n}}}$=2${∁}_{10}^{1}$+$3{∁}_{10}^{2}$+…+10${∁}_{10}^{9}$+11${∁}_{10}^{10}$=${∁}_{10}^{1}$+$2{∁}_{10}^{2}$+…+$10{∁}_{10}^{10}$+${∁}_{10}^{1}+{∁}_{10}^{2}$+…+${∁}_{10}^{10}$=${∁}_{10}^{1}$+$2{∁}_{10}^{2}$+…+$10{∁}_{10}^{10}$+210-1.
由(x+1)10=1+${∁}_{10}^{1}x$+${∁}_{10}^{2}{x}^{2}$+…+${∁}_{10}^{10}{x}^{10}$,兩邊求導(dǎo)可得:10(x+1)9=${∁}_{10}^{1}$+$2{∁}_{10}^{2}$x+…+$10{∁}_{10}^{10}$x9,
令x=1可得:$2{∁}_{10}^{2}$+…+$10{∁}_{10}^{10}$=10×29
∴$\sum_{n=1}^{10}{{a_n}{b_{2n}}}$=10×29+210-1=3×211-1.
(2)A=1,B=0,an=tn-1+1.存在常數(shù)t=2使得$\sum_{n=1}^{10}{({2{a_n}-{2^n}}){b_{2n}}}$=2046.
∵$\sum_{n=1}^{10}{({2{a_n}-{2^n}}){b_{2n}}}$=$\sum_{n=1}^{10}$(2tn-1+2-2n)${∁}_{10}^{n}$=$\sum_{n=1}^{10}$(2n+2-2n)${∁}_{10}^{n}$=2$\sum_{n=1}^{10}$${∁}_{10}^{n}$=2(210-1)=2046,
∴存在常數(shù)t=2使得$\sum_{n=1}^{10}{({2{a_n}-{2^n}}){b_{2n}}}$=2046.

點(diǎn)評(píng) 本題考查了二項(xiàng)式定理的應(yīng)用、導(dǎo)數(shù)的運(yùn)算性質(zhì)、方程思想方法,考查了推理能力與計(jì)算能力,屬于難題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知集合A={x|x2-x<0},B={x|x<a},若A∩B=A,則實(shí)數(shù)a的取值范圍是( 。
A.(-∞,1]B.(-∞,1)C.[1,+∞)D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.若有窮數(shù)列a1,a2…an(n是正整數(shù)),滿足a1=an,a2=an-1,…,an=a1即ai=an-i+1(i是正整數(shù),且1≤i≤n),就稱該數(shù)列為“對(duì)稱數(shù)列”.例如,數(shù)列1,2,5,2,1與數(shù)列8,4,2,2,4,8都是“對(duì)稱數(shù)列”.
(1)已知數(shù)列{bn}是項(xiàng)數(shù)為9的對(duì)稱數(shù)列,且b1,b2,b3,b4,b5成等差數(shù)列,b1=2,b4=11,試求b6,b7,b8,b9,并求前9項(xiàng)和s9
(2)若{cn}是項(xiàng)數(shù)為2k-1(k≥1)的對(duì)稱數(shù)列,且ck,ck+1…c2k-1構(gòu)成首項(xiàng)為31,公差為-2的等差數(shù)列,數(shù)列
{cn}前2k-1項(xiàng)和為S2k-1,則當(dāng)k為何值時(shí),S2k-1取到最大值?最大值為多少?
(3)設(shè){dn}是100項(xiàng)的“對(duì)稱數(shù)列”,其中d51,d52,…,d100是首項(xiàng)為1,公比為2的等比數(shù)列.求{dn}前n項(xiàng)的和Sn(n=1,2,…,100).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若平面向量$\overrightarrow{a}$、$\overrightarrow$滿足|2$\overrightarrow{a}$-$\overrightarrow$|≤2$\sqrt{2}$,則$\overrightarrow{a}$•$\overrightarrow$的最小值是-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知在($\root{3}{x}$-$\frac{1}{2\root{3}{x}}$)n(n∈N*)的展開式中,第6項(xiàng)為常數(shù)項(xiàng),那么其展開式中共有3項(xiàng)是有理項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=ax3+bx2-3x(a,b∈R)在點(diǎn)處取得x=-1極大值為2.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)若對(duì)于區(qū)間[-2,2]上任意兩個(gè)自變量的值x1,x2,都有|f(x1)-f(x2)|≤c,求實(shí)數(shù)c的最小值.
(注:|f(x1)-f(x2)|≤|f(x)max-f(x)min|).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.如圖是求樣本x1,x2,…,x10平均數(shù)$\overline x$的程序框圖,圖中空白框中應(yīng)填入的內(nèi)容為( 。
A.S=S+xnB.$S=S+\frac{x_n}{n}$C.S=S+nD.$S=S+\frac{x_n}{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知集合A={1,-1},B={1,0,-1},則集合C={a+b|a∈A,b∈B}中元素的個(gè)數(shù)為( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.在△ABC中,已知AB=AC=2BC,則sinA=$\frac{\sqrt{15}}{8}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案