設變量x,y滿足約束條件
y≥0
x-y+1≥0
x+y-3≤0
.若目標函數(shù)z=ax+y在點(1,2)處取得最大值,則a的取值范圍為( 。
A、(1,+∞)
B、(-∞,-1)
C、(-1,1)
D、[-1,1]
考點:簡單線性規(guī)劃
專題:不等式的解法及應用
分析:作出不等式對應的平面區(qū)域,利用線性規(guī)劃的知識,確定目標取最優(yōu)解的條件,即可求出a的取值范圍.
解答: 解:作出不等式對應的平面區(qū)域,
由z=ax+y得y=-ax+z,
要使目標函數(shù)z=ax+y僅在點A(1,2)處取得最大值,
若a>0,此時目標函數(shù)的斜率k=-a<0,
則此時-a≤-1,即a>1,
若a<0,則-a>0,此時不滿足條件,
故選:A
點評:本題主要考查線性規(guī)劃的應用,利用數(shù)形結合是解決線性規(guī)劃題目的常用方法.根據(jù)條件目標函數(shù)z=ax+y僅在點A(1,2)處取得最大值,確定直線的位置是解決本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖是網(wǎng)絡工作者經(jīng)常用來解釋網(wǎng)絡運作的蛇形模型:數(shù)字1出現(xiàn)在第1行;數(shù)字2,3出現(xiàn)在第2行;數(shù)字6,5,4(從左至右)出現(xiàn)在第3行;數(shù)字7,8,9,10出現(xiàn)在第4行;…;依此類推,則
(Ⅰ)按網(wǎng)絡運作順序第n行第1個數(shù)(如第2行第1個數(shù)為2,第3行第1個數(shù)為4,…)是
 
;
(Ⅱ)第63行從左至右的第3個數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列集合中為空集的是( 。
A、{x∈N|x2≤0}
B、{x∈R|x2-1=0}
C、{x∈R|x2+x+1=0}
D、{0}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

甲、乙兩人數(shù)學成績的莖葉圖,如圖所示,則兩人的成績中位數(shù)為( 。
A、87,98
B、98,87
C、88,88
D、81,83

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若集合M={y|y=3x},集合S={x|y=lg(x-1)},則下列各式正確的是( 。
A、M∪S=MB、M∪S=S
C、M=SD、M∩S=∅

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

f(x)是偶函數(shù),定義域是(-∞,+∞),在[0,+∞)上f(x)是減函數(shù),那么f(-
3
4
)與f(a2-a+1)(a∈R)的大小關系是( 。
A、f(-
3
4
)>f(a2-a+1)
B、f(-
3
4
)≥f(a2-a+1)
C、f(-
3
4
)<f(a2-a+1)
D、f(-
3
4
)≤f(a2-a+1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

有兩個等差數(shù)列{an},{bn},它們的前n項和分別為Sn,Tn,若
an
bn
=
4n+3
n+2
,則
S11
T11
=( 。
A、
27
8
B、
57
14
C、
52
13
D、
47
12

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設全集U={1,2,3,4,5,6,7,8},A={1,2,3},B={3,4,5,6}.
(1)求A∪B,A∩B,∁U(A∪B),∁U(A∩B);
(2)求∁UA,∁UB.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合p={x|(x-7)(x-4)≤0},Q={x|-2≤x≤5},求P∪Q和∁R(P∩Q).

查看答案和解析>>

同步練習冊答案