【題目】為了檢測(cè)某種零件的一條生產(chǎn)線的生產(chǎn)過(guò)程,從生產(chǎn)線上隨機(jī)抽取一批零件,根據(jù)其尺寸的數(shù)據(jù)分成,,,,,組,得到如圖所示的頻率分布直方圖.若尺寸落在區(qū)間之外,則認(rèn)為該零件屬不合格的零件,其中分別為樣本平均和樣本標(biāo)準(zhǔn)差,計(jì)算可得(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表).

1)若一個(gè)零件的尺寸是,試判斷該零件是否屬于不合格的零件;

2)工廠利用分層抽樣的方法從樣本的前組中抽出個(gè)零件,標(biāo)上記號(hào),并從這個(gè)零件中再抽取個(gè),求再次抽取的個(gè)零件中恰有個(gè)尺寸小于的概率.

【答案】1)該零件屬于不合格的零件;(2.

【解析】

1)先由頻率分布直方圖中的數(shù)據(jù),求出樣本平均值,得到,根據(jù)題意,即可得出結(jié)果;

2)根據(jù)分層抽樣的方法得到第一組抽個(gè),記為;第二組抽個(gè),記為,;第三組抽個(gè),記為,,用列舉法列舉出總的基本事件,以及滿足條件的基本事件,進(jìn)而可得出結(jié)果.

1)由頻率分布直方圖可得,該批零件的樣本平均值為:

;

,,,

所以該零件屬于不合格的零件;

2)按照分層抽樣抽個(gè)零件時(shí),第一組抽個(gè),記為;第二組抽個(gè),記為;第三組抽個(gè),記為,,

從這個(gè)零件中抽取個(gè)零件共有種情況,分別為,,,,,,,,,,.

其中再抽取的個(gè)零件中恰有個(gè)尺寸小于的有種,分別為,,,,,.

根據(jù)古典概型概率公式,可得.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),若對(duì)任意,都有成立,則實(shí)數(shù)的取值范圍是( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓經(jīng)過(guò)點(diǎn)離心率.

(Ⅰ)求橢圓的方程;

(Ⅱ)經(jīng)過(guò)橢圓左焦點(diǎn)的直線(不經(jīng)過(guò)點(diǎn)且不與軸重合)與橢圓交于兩點(diǎn),與直線:交于點(diǎn),記直線的斜率分別為.則是否存在常數(shù),使得向量 共線?若存在求出的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),.

(1)若,求函數(shù)的單調(diào)減區(qū)間;

(2)若關(guān)于x的不等式恒成立,求實(shí)數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知2件次品和3件正品混放在一起,現(xiàn)需要通過(guò)檢測(cè)將其區(qū)分,每次隨機(jī)檢測(cè)一件產(chǎn)品,檢測(cè)后不放回,直到檢測(cè)出2件次品或者檢測(cè)出3件正品時(shí)檢測(cè)結(jié)束.

1)求第一次檢測(cè)出的是次品且第二次檢測(cè)出的是正品的概率;

2)已知每檢測(cè)一件產(chǎn)品需要費(fèi)用100元,設(shè)X表示直到檢測(cè)出2件次品或者檢測(cè)出3件正品時(shí)所需要的檢測(cè)費(fèi)用(單位:元),求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知公比為正數(shù)的等比數(shù)列,首項(xiàng),前n項(xiàng)和為,且,,成等差數(shù)列.

(Ⅰ)求數(shù)列的通項(xiàng)公式;

(Ⅱ)設(shè),求數(shù)列的前n項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方體中,點(diǎn)在面對(duì)角線上運(yùn)動(dòng),則下列四個(gè)結(jié)論:

平面

④三棱錐的體積是定值

其中正確結(jié)論的個(gè)數(shù)有( )個(gè).

A.1B.2

C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】時(shí)下,網(wǎng)校教學(xué)越來(lái)越受到廣大學(xué)生的喜愛(ài),它已經(jīng)成為學(xué)生們課外學(xué)習(xí)的一種趨勢(shì),假設(shè)某網(wǎng)校的套題每日的銷(xiāo)售量(單位:千套)與銷(xiāo)售價(jià)格(單位:元/套)滿足的關(guān)系式,其中,為常數(shù).已知銷(xiāo)售價(jià)格為4/套時(shí),每日可售出套題21千套.

1)求的值;

2)假設(shè)網(wǎng)校的員工工資,辦公等所有開(kāi)銷(xiāo)折合為每套題2元(只考慮銷(xiāo)售出的套數(shù)),試確定銷(xiāo)售價(jià)格的值,使網(wǎng)校每日銷(xiāo)售套題所獲得的利潤(rùn)最大.(保留1位小數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某企業(yè)生產(chǎn)的某種產(chǎn)品被檢測(cè)出其中一項(xiàng)質(zhì)量指標(biāo)存在問(wèn)題.該企業(yè)為了檢查生產(chǎn)該產(chǎn)品的甲、乙兩條流水線的生產(chǎn)情況,隨機(jī)地從這兩條流水線上生產(chǎn)的大量產(chǎn)品中各抽取50件產(chǎn)品作為樣本,測(cè)出它們的這一項(xiàng)質(zhì)量指標(biāo)值.若該項(xiàng)質(zhì)量指標(biāo)值落在內(nèi),則為合格品,否則為不合格品.如圖是甲流水線樣本的頻數(shù)分布表和乙流水線樣本的頻率分布直方圖.

(1)根據(jù)頻率分布直方圖,估計(jì)乙流水線生產(chǎn)的產(chǎn)品該質(zhì)量指標(biāo)值的中位數(shù);

(2)若將頻率視為概率,某個(gè)月內(nèi)甲、乙兩條流水線均生產(chǎn)了5000件產(chǎn)品,則甲、乙兩條流水線分別生產(chǎn)出不合格品約多少件?

(3)根據(jù)已知條件完成下面列聯(lián)表,并回答是否有的把握認(rèn)為“該企業(yè)生產(chǎn)的這種產(chǎn)品的質(zhì)量指標(biāo)值與甲、乙兩條流水線的選擇有關(guān)”?

甲流水線

乙流水線

合計(jì)

合格品

不合格品

合計(jì)

附:,其中.

臨界值表:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

同步練習(xí)冊(cè)答案