8.在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,若(a+b-c)(a-b+c)=bc.
(Ⅰ)求A的值;
(Ⅱ)已知向量$\overrightarrow{m}$=$(c,\sqrt{3}+1)$,$\overrightarrow{n}$=(b,2),若$\overrightarrow{m}$與$\overrightarrow{n}$共線,求tanC.

分析 (Ⅰ)整理已知等式可得b2+c2-a2=bc,利用余弦定理可得$cosA=\frac{1}{2}$,結(jié)合范圍0<A<π,即可解得A的值.
(Ⅱ)由m與n共線可得$2c=(\sqrt{3}+1)b$,由正弦定理可得$2sinC=(\sqrt{3}+1)sinB$,結(jié)合sinB=sin(A+C),由三角函數(shù)恒等變換的應(yīng)用即可求值.

解答 (本題滿分為12分)
解:(Ⅰ)∵(a+b-c)(a-b+c)=bc,
∴a2-b2-c2+2bc=bc,
∴b2+c2-a2=bc…(3分)
由余弦定理知:∵b2+c2-a2=2bccosA,…(5分)
∴$cosA=\frac{1}{2}$,
∵0<A<π,
∴$A=\frac{π}{3}$…(6分)
(Ⅱ)∵m與n共線∴$2c=(\sqrt{3}+1)b$,…(7分)
由正弦定理知:$2sinC=(\sqrt{3}+1)sinB$,…(8分)
又∵在△ABC中,sinB=sin(A+C),
∴$2sinC=(\sqrt{3}+1)sin(\frac{π}{3}+C)$,…(10分)
即:$2sinC=(\sqrt{3}+1)(\frac{{\sqrt{3}}}{2}cosC+\frac{1}{2}sinC)$$(3-\sqrt{3})sinC=(\sqrt{3}+3)cosC$,
∴$tanC=2+\sqrt{3}$…(12分)

點(diǎn)評(píng) 本題主要考查了平面向量數(shù)量積的運(yùn)算,正弦定理,余弦定理,三角函數(shù)恒等變換的應(yīng)用在解三角形中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.如圖所示是沿圓錐的兩條母線將圓錐削去一部分后所得幾何體的三視圖,其體積為$\frac{16π}{9}+\frac{{2\sqrt{3}}}{3}$,則圓錐的母線長為( 。
A.$2\sqrt{2}$B.$2\sqrt{3}$C.4D.$\sqrt{2}+\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知函數(shù)$f(x)=\left\{\begin{array}{l}{log_5}x,x>0\\{2^x}\;\;,x≤0\end{array}\right.$,則$f(f(\frac{1}{25}))$=( 。
A.4B.$\frac{1}{4}$C.-4D.$-\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知向量$\overrightarrow{a}$=(sinωx+cosωx,$\sqrt{3}$cosωx),$\overrightarrow$=(cosωx-sinωx,2sinωx)(ω>0),若函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$的相鄰兩對稱軸間的距離等于$\frac{π}{2}$.
(Ⅰ)求ω的值;
(Ⅱ)在△ABC中,a、b、c分別是角A、B、C所對的邊,且f(A)=1,$a=\sqrt{3}$,b+c=3.求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)實(shí)數(shù)x,y滿足約束條件$\left\{{\begin{array}{l}{3x-2y+4≥0}\\{x+y-4≤0}\\{x-\frac{1}{a}y-2≤0}\end{array}}\right.$,已知z=2x+y的最大值是7,最小值是-26,則實(shí)數(shù)a的值為( 。
A.6B.-6C.-1D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)全集U={x∈N|x≥2},集合A={x|x2-5x≥0},B={x|x≥3},則(∁UA)∩B=( 。
A.{3}B.{3.4}C.{3.4,5}D.{3.4,5,6}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$$-\frac{{y}^{2}}{^{2}}$=1的離心率為$\frac{\sqrt{5}}{2}$,過右焦點(diǎn)F的直線與兩條漸近線分別交于點(diǎn)A,B,且與其中一條漸近線垂直,若△OAB的面積為$\frac{16}{3}$,其中O為坐標(biāo)原點(diǎn),則雙曲線的焦距為2$\sqrt{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)平面上有直線L:y=2x,曲線C:y=$\frac{1}{2}$x3.又有下列方式定義數(shù)列{an}:
(1)a1=$\frac{1}{2}$;
(2)當(dāng)給定an后,作過點(diǎn)(an,0)且與y軸平行的直線,它與l的交點(diǎn)記為Pn,再過點(diǎn)Pn且與x軸平行的直線,它與C的交點(diǎn)記為Qn,定義an+1為Qn的橫坐標(biāo).試求數(shù)列{an}的通項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.在等差數(shù)列{an}中,已知a4=2,a8=14,則a15等于( 。
A.32B.-32C.35D.-35

查看答案和解析>>

同步練習(xí)冊答案