3.設(shè)實數(shù)x,y滿足約束條件$\left\{{\begin{array}{l}{3x-2y+4≥0}\\{x+y-4≤0}\\{x-\frac{1}{a}y-2≤0}\end{array}}\right.$,已知z=2x+y的最大值是7,最小值是-26,則實數(shù)a的值為(  )
A.6B.-6C.-1D.1

分析 由約束條件作出可行域,化目標函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,聯(lián)立方程組求得最優(yōu)解的坐標,代入目標函數(shù)求得a值.

解答 解:由約束條件$\left\{{\begin{array}{l}{3x-2y+4≥0}\\{x+y-4≤0}\\{x-\frac{1}{a}y-2≤0}\end{array}}\right.$作出可行域如圖,
聯(lián)立$\left\{\begin{array}{l}{3x-2y+4=0}\\{ax-y-2a=0}\end{array}\right.$,解得A($\frac{4a+4}{2a-3},\frac{10a}{2a-3}$),
聯(lián)立$\left\{\begin{array}{l}{x+y-4=0}\\{ax-y-2a=0}\end{array}\right.$,解得B($\frac{6a+8}{a+1},\frac{2a}{a+1}$),
化目標函數(shù)z=2x+y為y=-2x+z,
由圖可知,當直線y=-2x+z分別經(jīng)過A,B時,直線y=-2x+z在y軸上的截距有最小值和最大值,
z有最小值和最大值,則$\left\{\begin{array}{l}{2×\frac{4a+4}{2a-3}+\frac{10a}{2a-3}=-26}\\{2×\frac{2a+4}{a+1}+\frac{2a}{a+1}=7}\end{array}\right.$,解得a=1.
故選:D.

點評 本題考查簡單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.函數(shù)y=-$\frac{1}{2}$x2+x+m的最大值是3m-$\frac{1}{2}$,則m的值是( 。
A.4B.2C.1D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若復(fù)數(shù)Z滿足(1+i)Z=|3+4i|,則Z的實部為( 。
A.-$\frac{3}{2}$B.-$\frac{5}{2}$C.$\frac{3}{2}$D.$\frac{5}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在△ABC中,AB=2,BC=$\sqrt{10}$,AC=3.
(1)求$\overrightarrow{AB}•\overrightarrow{AC}$的值;
(2)若O是△ABC外心,求$\overrightarrow{AO}•\overrightarrow{BC}$的值
(3)若O為△ABC外心,$\overrightarrow{AO}=p\overrightarrow{AB}+q\overrightarrow{AC}$,求p,q的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)集合A={x|-1≤x≤1},B={x|0<x<3},則A∩B=( 。
A.{x|0<x≤1}B.{x|0<x<1}C.{x|-1≤x<3}D.{x|1≤x<3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,若(a+b-c)(a-b+c)=bc.
(Ⅰ)求A的值;
(Ⅱ)已知向量$\overrightarrow{m}$=$(c,\sqrt{3}+1)$,$\overrightarrow{n}$=(b,2),若$\overrightarrow{m}$與$\overrightarrow{n}$共線,求tanC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知等差數(shù)列{an}的公差d≠0,且a1,a3,a13成等比數(shù)列,若a1=1,Sn是數(shù)列{an}的前n項的和,則$\frac{{2{S_n}+14}}{{{a_n}+1}}(n∈N*)$的最小值為( 。
A.$\frac{11}{2}$B.$\frac{16}{3}$C.$2\sqrt{7}$D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.命題“?x0∈R,x${\;}_{0}^{2}=1$”的否定形式是( 。
A.?x0∈R,x${\;}_{0}^{2}≠1$B.?x0∈R,x${\;}_{0}^{2}>1$C.?x∈R,x2=1D.?x∈R,x2≠1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13..已知tanα,tanβ是方程x2-5x+5=0的兩個根,求:sin2(α+β)+sin(α+β)cos(α+β)+cos2(α+β)+3的值.

查看答案和解析>>

同步練習(xí)冊答案