已知an+1=nan+n-1,a1=1,求數(shù)列{an}的通項(xiàng)公式.
考點(diǎn):數(shù)列遞推式
專題:點(diǎn)列、遞歸數(shù)列與數(shù)學(xué)歸納法
分析:由an+1=nan+n-1得1+an+1=n(an+1),利用累積法進(jìn)行求解即可.
解答: 解:∵an+1=nan+n-1,
∴1+an+1=n(an+1),即
1+an+1
1+an
=n,
1+a2
1+a1
=1
,
1+a3
1+a2
=2
,
1+a4
1+a3
=3,…
1+an
1+an-1
=n-1,
等式兩邊同時相乘得
1+a2
1+a1
1+a3
1+a2
1+a4
1+a3
,
1+an
1+an-1
=1×2×3×…(n-1),
1+an
2
=(n-1)!

則1+an=2•(n-1)!,
即an=2•(n-1)!-1.
故數(shù)列{an}的通項(xiàng)公式an=2•(n-1)!.
點(diǎn)評:本題主要考查數(shù)列通項(xiàng)公式的求解,根據(jù)數(shù)列的遞推關(guān)系,利用累積法是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知冪函數(shù)y=f(x)的圖象過點(diǎn)(4,2),令an=f(n+1)+f(n),n∈N+,記數(shù)列{
1
an
}的前n項(xiàng)和為Sn,則Sn=10時,n的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)全集為R,集合A={x|log 
1
2
(3-x)>-2},B={x|y=
x-2
-
3-x
},求(∁UA)∩B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足:
an+1
an
=
n
n+1
,且a1=1,則
a7
a3
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直三棱柱ABC-A1B1C1中,若BC⊥AC,∠A=
π
3
,AC=4,AA1=4,M為AA1的中點(diǎn),點(diǎn)P為BM中點(diǎn),Q在線段CA1上,且A1Q=3QC.則異面直線PQ與AC所成角的正弦值
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知長方體ABCD-A1B1C1D1,AB=
3
,BC=1,AA1=2,則該長方體的外接球體積為( 。
A、8π
B、
8
2
3
π
C、
4
3
3
π
D、12
3
π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn,若4Sn=(2n-1)an+1+1(n∈N),且a1=1.
(1)求證:數(shù)列{an}為等差數(shù)列;
(2)設(shè)bn=
1
an
Sn
,數(shù)列{bn}的前n項(xiàng)和為Tn,證明:Tn
3
2
(n∈N).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的一個焦點(diǎn)與拋物線y2=20x的焦點(diǎn)重合,且雙曲線的離心率等于
5
3
,則該雙曲線的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C經(jīng)過三點(diǎn)O(0,0),A(1,3),B(4,0).直線l過點(diǎn)P(3,6),且被圓C截得弦長為4,則直線l的方程為
 

查看答案和解析>>

同步練習(xí)冊答案