【題目】已知點(diǎn)是菱形所在平面外一點(diǎn),,

1)求證:平面平面;

2)求二面角的余弦值.

【答案】1)見(jiàn)解析;(2

【解析】

1)因?yàn)?/span>是菱形,可得 ,進(jìn)而證明,在由勾股定可證明,根據(jù)線面垂直的判定定理可證平面,再根據(jù)面面垂直的判定定理,即可證明結(jié)果;

2)根據(jù)題意建立空間直角坐標(biāo)系,再利用空間向量的坐標(biāo)運(yùn)算公式求出二面角的余弦值.

1)證明:設(shè)的中點(diǎn),連接

是菱形,

,∴,

,

平面,

平面

∴平面平面;

2)由(1)得,以點(diǎn)為坐標(biāo)原點(diǎn),的方向?yàn)?/span>軸的正方向,的方向?yàn)?/span>軸的正方向,建立如圖的空間直角坐標(biāo)系,則

設(shè)是平面的一個(gè)法向量,

,∴

,則,

設(shè)是平面的一個(gè)法向量,

,∴,

,則

又二面角為鈍二面角,

∴二面角的余弦值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將函數(shù)fx)=cos2x)的圖象向左平移個(gè)單位長(zhǎng)度后,得到函數(shù)gx)的圖象,則下列結(jié)論中正確的是_____.(填所有正確結(jié)論的序號(hào))

gx)的最小正周期為4π;

gx)在區(qū)間[0]上單調(diào)遞減;

gx)圖象的一條對(duì)稱(chēng)軸為x

gx)圖象的一個(gè)對(duì)稱(chēng)中心為(,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy內(nèi),點(diǎn)()在橢圓Ea0,b0),橢圓E的離心率為,直線l過(guò)左焦點(diǎn)F且與橢圓E交于AB兩點(diǎn)

1)求橢圓E的標(biāo)準(zhǔn)方程;

2)若動(dòng)直線lx軸不重合,在x軸上是否存在定點(diǎn)P,使得PF始終平分∠APB?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo):若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的長(zhǎng)軸長(zhǎng)為,焦距為2,拋物線的準(zhǔn)線經(jīng)過(guò)的左焦點(diǎn).

(1)求的方程;

(2)直線經(jīng)過(guò)的上頂點(diǎn)且交于,兩點(diǎn),直線,分別交于點(diǎn)(異于點(diǎn)),(異于點(diǎn)),證明:直線的斜率為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】讀書(shū)可以讓人保持思想活躍,讓人得到智慧啟發(fā),讓人滋養(yǎng)浩然之氣,2018年第一期中國(guó)青年閱讀指數(shù)數(shù)據(jù)顯示,從供給的角度,文學(xué)閱讀域是最多的,遠(yuǎn)遠(yuǎn)超過(guò)了其他閱讀域的供給量.某校采用分層抽樣的方法從1000名文科生和2000名理科生中抽取300名學(xué)生進(jìn)行了在暑假閱讀內(nèi)容和閱讀時(shí)間方面的調(diào)查,得到數(shù)據(jù)如表:

文學(xué)閱讀人數(shù)

非文學(xué)閱讀人數(shù)

調(diào)查人數(shù)

理科生

130

文科生

45

合計(jì)

1)先完成上面的表格,并判斷能否有90%的把握認(rèn)為學(xué)生所學(xué)文理與閱讀內(nèi)容有關(guān)?

2300名被調(diào)查的學(xué)生中,隨機(jī)進(jìn)取30名學(xué)生,整理其日平均閱讀時(shí)間(單位:分鐘)如表:

閱讀時(shí)間

男生人數(shù)

2

4

3

5

2

女生人數(shù)

1

3

4

3

3

試估計(jì)這30名學(xué)生日閱讀時(shí)間的平均值(同一組中的數(shù)據(jù)以這組數(shù)據(jù)所在區(qū)間中點(diǎn)的值作代表)

3)從(2)中日均閱讀時(shí)間不低于120分鐘的學(xué)生中隨機(jī)選取2人介紹閱讀心得,求這兩人都是女生的概率.

參考公式: ,其中.

參考數(shù)據(jù):

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系,曲線的參數(shù)方程為(其中為參數(shù))曲線的普通方程為,以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸建立極坐標(biāo)系.

1)求曲線和曲線的極坐標(biāo)方程;

2)射線:依次與曲線和曲線交于兩點(diǎn),射線:依次與曲線和曲線交于兩點(diǎn),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱錐PABC中,PA⊥平面ABCABBC,PAAB,DPB中點(diǎn),PC3PE.

1)求證:平面ADE⊥平面PBC;

2)在AC上是否存在一點(diǎn)M,使得MB∥平面ADE?若存在,請(qǐng)確定點(diǎn)M的位置,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐的一個(gè)側(cè)面為等邊三角形,且平面平面,四邊形是平行四邊形,,,.

1)求證:;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列的前項(xiàng)和為,且滿足,,設(shè),.

(Ⅰ)求證:數(shù)列是等比數(shù)列;

(Ⅱ)若,,求實(shí)數(shù)的最小值;

(Ⅲ)當(dāng)時(shí),給出一個(gè)新數(shù)列,其中,設(shè)這個(gè)新數(shù)列的前項(xiàng)和為,若可以寫(xiě)成,,)的形式,則稱(chēng)為“指數(shù)型和”.問(wèn)中的項(xiàng)是否存在“指數(shù)型和”,若存在,求出所有“指數(shù)型和”;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案