過橢圓C:的右焦點(diǎn)F2引直線l,與C的右準(zhǔn)線交于A點(diǎn),與C交于B、C兩點(diǎn),與y軸交于D點(diǎn),若,則C的離心率為
[     ]
A.    
B.    
C.    
D.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年廣州市七區(qū)聯(lián)考高二數(shù)學(xué)(文)下學(xué)期期末監(jiān)測 題型:解答題

(本大題滿分14分)

如圖,已知直線L:過橢圓C:的右焦點(diǎn)F,

且交橢圓C于A、B兩點(diǎn),點(diǎn)A、B在直線上的射影依次為點(diǎn)D、E.

(Ⅰ)若拋物線的焦點(diǎn)為橢圓C的上頂點(diǎn),求橢圓C的方程;

(Ⅱ)若為x軸上一點(diǎn);

求證: A、N、E三點(diǎn)共線.

 

 

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:陜西省模擬題 題型:解答題

已知直線L:x=my+1(m≠0)過橢圓C:的右焦點(diǎn)F,且交橢圓C于A,B兩點(diǎn)。(1)若拋物線x2=4y的焦點(diǎn)為橢圓C的上頂點(diǎn),求橢圓C的方程;
(2)對于(1)中的橢圓C,若直線L交y軸于點(diǎn)M,且,當(dāng)m變化時,求λ12的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:0103 月考題 題型:解答題

已知直線:x=my+1過橢圓C:的右焦點(diǎn)F,拋物線:的焦點(diǎn)為橢圓C的上頂點(diǎn),且直線交橢圓C于A、B兩點(diǎn),點(diǎn)A、F、B在直線g:x=4上的射影依次為點(diǎn)D、K、E。
(1)求橢圓C的方程;
(2)若直線交y軸于點(diǎn)M,且,當(dāng)m變化時,探求的值是否為定值?若是,求出的值;否則,說明理由;
(3)連接AE、BD,試探索當(dāng)m變化時,直線AE與BD是否相交于定點(diǎn)?若是,請求出定點(diǎn)的坐標(biāo),并給予證明;否則,說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年安徽省安慶市潛山中學(xué)高考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

如圖,已知直線L:x=my+1過橢圓C:的右焦點(diǎn)F,且交橢圓C于A,B兩點(diǎn),點(diǎn)A,F(xiàn),B在直線G:x=a2上的射影依次為點(diǎn)D,K,E,
(1)已知拋物線的焦點(diǎn)為橢圓C的上頂點(diǎn).
①求橢圓C的方程;
②若直線L交y軸于點(diǎn)M,且,當(dāng)m變化時,求λ12的值;
(2)連接AE,BD,試探索當(dāng)m變化時,直線AE、BD是否相交于一定點(diǎn)N?若交于定點(diǎn)N,請求出N點(diǎn)的坐標(biāo)并給予證明;否則說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年湖北省黃岡市名校高考數(shù)學(xué)模擬試卷09(理科)(解析版) 題型:解答題

如圖,已知直線L:x=my+1過橢圓C:的右焦點(diǎn)F,且交橢圓C于A,B兩點(diǎn),點(diǎn)A,F(xiàn),B在直線G:x=a2上的射影依次為點(diǎn)D,K,E,
(1)已知拋物線的焦點(diǎn)為橢圓C的上頂點(diǎn).
①求橢圓C的方程;
②若直線L交y軸于點(diǎn)M,且,當(dāng)m變化時,求λ12的值;
(2)連接AE,BD,試探索當(dāng)m變化時,直線AE、BD是否相交于一定點(diǎn)N?若交于定點(diǎn)N,請求出N點(diǎn)的坐標(biāo)并給予證明;否則說明理由.

查看答案和解析>>

同步練習(xí)冊答案