3.已知全集U=R,N={x|-3<x<0},M={x|x<-1},則圖中陰影部分表示的集合是( 。
A.{x|-3<x<-1}B.{x|-3<x<0}C.{x|-1≤x<0}D.{x<-3}

分析 由Venn圖可知陰影部分表示N∩(CUM),即可得出答案.

解答 解:由圖象知,圖中陰影部分所表示的集合是N∩(CUM),
又M={x|x<-1},
∴CUM={x|x≥-1}
∴N∩(CUM)=[-1,0)
故選:C.

點評 本題考查venn表示的集合的運算,一般采用數(shù)形結(jié)合的方法解決問題,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

13.若增函數(shù)f(x)=ax+b與x軸交點是(2,0),則不等式bx2-ax>0的解集是( 。
A.$(-∞,-\frac{1}{2})∪(0,+∞)$B.$(0,\frac{1}{2})$C.$(-\frac{1}{2},0)$D.$(-∞,0)∪(\frac{1}{2},+∞)$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.將函數(shù)f(x)=2sin(2x-$\frac{π}{3}$)+1的圖象上各點的縱坐標不變,橫坐標縮短為原來的$\frac{1}{2}$,所得圖象的一個對稱中心可能是( 。
A.($\frac{π}{3}$,0)B.($\frac{2π}{3}$,0)C.($\frac{π}{3}$,1)D.($\frac{2π}{3}$,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知等差數(shù)列{an}中,a1=-3,11a5=5a8,前n項和為Sn
(1)求an;
(2)當n為何值時,Sn最?并求Sn的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知全集U=R,函數(shù)f(x)=lg(4-x)-$\frac{1}{{\sqrt{x+1}}}$的定義域為集合A,集合B={x|-2<x<a}.
(1)求集合∁UA;     
(2)若A∪B=B,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.某幾何體的三視圖如圖所示,則該幾何體的體積為(  )
A.$π+\sqrt{3}π$B.$\frac{4}{3}π$C.$2π+\frac{{2\sqrt{3}}}{3}π$D.$π+\frac{{\sqrt{3}}}{3}π$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知函數(shù)f(x)=ln(x+1)-ax(a∈R).
(Ⅰ)當a=1時,求f(x)的最大值;
(Ⅱ)是否存在實數(shù)a,使得關(guān)于x的不等式f(x)<0在(0,+∞)上恒成立?若存在,求出a的取值范圍;若不存在,請說明理由;
(Ⅲ)求證:($\frac{1}{n}$+1)n<e,n∈N*(其中e為自然對數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知三棱柱ABC-A1B1C1的側(cè)棱與底面邊長都相等,A1在底面ABC上的射影為BC的中點,則異面直線AB與CC1所成的角的余弦值為(  )
A.$\frac{\sqrt{3}}{4}$B.$\frac{3}{4}$C.$\frac{\sqrt{5}}{4}$D.$\frac{5}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.在等比數(shù)列{an}中,已知a1=2,a3=6,那么a5等于( 。
A.8B.10C.18D.36

查看答案和解析>>

同步練習冊答案