【題目】經(jīng)過對K2的統(tǒng)計量的研究,得到了若干個觀測值,當K2≈6.706時,我們認為兩分類變量A、B(  )

A. 67.06%的把握認為AB有關(guān)系 B. 99%的把握認為AB有關(guān)系

C. 0.010的把握認為AB有關(guān)系 D. 沒有充分理由說明AB有關(guān)系

【答案】B

【解析】

根據(jù)所給的觀測值,同臨界值表中的臨界值進行比較,根據(jù)P(K2>3.841)=0.05,得到我們有1-0.05=95%的把握認為A與B有關(guān)系.

依據(jù)下表:

P( K2≥k)

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

,

∴我們在錯誤的概率不超過0.01的前提下有99%的把握認為AB有關(guān)系
故選:B.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=1+x﹣ + ﹣…+ + ,則下列結(jié)論正確的是(
A.f(x)在(0,1)上恰有一個零點
B.f(x)在(0,1)上恰有兩個零點
C.f(x)在(﹣1,0)上恰有一個零點
D.f(x)在(﹣1,0)上恰有兩個零點

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】以平面直角坐標系原點O為極點,以x軸非負半軸為極軸,以平面直角坐標系的長度單位為長度單位建立極坐標系.已知直線l的參數(shù)方程為 (t為參數(shù)),曲線C的極坐標方程為ρsin2θ=4cosθ
(Ⅰ) 求曲線C的直角坐標方程;
(Ⅱ) 設(shè)直線l與曲線C相交于A,B兩點,求|AB|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)a>0,b>0(
A.若lna+2a=lnb+3b,則a>b
B.2a+2a=2b+3b,則a<b
C.若lna﹣2a=lnb﹣3b,則a>b
D.2a﹣2a=2b﹣3b,則a<b

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= sinωxcosωx﹣cos2ωx﹣ (ω>0,x∈R)的圖象上相鄰兩個最高點的距離為π.
(Ⅰ)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)若△ABC三個內(nèi)角A、B、C的對邊分別為a、b、c,且c= ,f(C)=0,sinB=3sinA,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)不等式|2x﹣1|<1的解集為M,a∈M,b∈M
(1)試比較ab+1與a+b的大小
(2)設(shè)max表示數(shù)集A的最大數(shù),h=max{ , },求證h≥2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若圖所示,將若干個點擺成三角形圖案,每條邊(包括兩個端點)n(n>1,n∈N*)個點,相應(yīng)的圖案中總的點數(shù)記為an , 則 + + +…+ =

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將一顆骰子先后拋擲2次,觀察向上的點數(shù),求:

(1)兩數(shù)之和為5的概率;

(2)兩數(shù)中至少有一個奇數(shù)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=sinωx+cosωx的最小正周期為π,x∈R,ω>0是常數(shù).
(1)求ω的值;
(2)若f(+)= , θ∈(0,),求sin2θ.

查看答案和解析>>

同步練習冊答案