若(2-x)4=a0+a1x+a2x2+a3x3+a4x4,則a0-a1+a2-a3+a4=
 
考點(diǎn):二項(xiàng)式系數(shù)的性質(zhì)
專題:二項(xiàng)式定理
分析:在所給的等式中,令x=-1,可得a0-a1+a2-a3+a4 的值.
解答: 解:在(2-x)4=a0+a1x+a2x2+a3x3+a4x4,中,令x=-1,
可得81=a0-a1+a2-a3+a4=,
故答案為:81.
點(diǎn)評(píng):本題主要考查二項(xiàng)式定理的應(yīng)用,是給變量賦值的問(wèn)題,關(guān)鍵是根據(jù)要求的結(jié)果,選擇合適的數(shù)值代入,屬于基題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C的對(duì)稱中心為原點(diǎn)O,焦點(diǎn)在x軸上,左右焦點(diǎn)分別為F1和F2,且|F1F2|=2,離心率e=
1
2

(Ⅰ)求橢圓C的方程;
(Ⅱ)過(guò)F1的直線l與橢圓C相交于A,B兩點(diǎn),若△AF2B的面積為
12
2
7
,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

有寫(xiě)好數(shù)字3,4,5的卡片各3張,若任意取4張組成4位數(shù),則可以構(gòu)成不同的4位數(shù)的個(gè)數(shù)是
 
.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

25
9
+(
27
64
 -
1
3
0=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

以斜邊為2
2
的等腰直角三角形的一腰所在的直線為旋轉(zhuǎn)軸,其余兩邊旋轉(zhuǎn)形成的面所圍成的旋轉(zhuǎn)體的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}的各項(xiàng)都不為零,公差d>0,且a5+a10=0,記數(shù)列{-
2
an
}的前n項(xiàng)和為Sn,則使Sn<0成立的正整數(shù)n的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

正四棱柱ABCD-A1B1C1D1的底面邊長(zhǎng)為1,AA1=2,點(diǎn)E、F、G分別為棱BB1、AA1、AD的中點(diǎn),則有下列命題:
①BG∥平面A1DE;
②A1E⊥DE;
③平面A1DE⊥平面BCC1B1;
④△A1DE所在平面截該四棱柱所得的截面是平行四邊形;
⑤△A1DE所在平面將該四棱柱分得的兩部分體積之比為7:17.
其中正確命題的序號(hào)為
 
.(填上所有正確命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知四棱錐P-ABCD的底面是邊長(zhǎng)為2的正方形,側(cè)面PAD是等邊三角形,且有側(cè)面PAD⊥底面ABCD,則四棱錐P-ABCD的外接球表面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=4x2+
1
x
單調(diào)遞減區(qū)間是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案