某航空公司進(jìn)行空乘人員的招聘,記錄了前來應(yīng)聘的6名男生和9名女生的身高,數(shù)據(jù)用莖葉圖如圖示(單位:cm),應(yīng)聘者獲知:男性身高在區(qū)間[174,182],女性身高在區(qū)間[164,172]的才能進(jìn)入招聘的下一環(huán)節(jié).

(Ⅰ)求6名男生的平均身高和9名女生身高的中位數(shù);
(Ⅱ)現(xiàn)從能進(jìn)入下一環(huán)節(jié)的應(yīng)聘者中抽取2人,求2人中至少有一名女生的概率.
考點(diǎn):古典概型及其概率計(jì)算公式,莖葉圖,眾數(shù)、中位數(shù)、平均數(shù)
專題:概率與統(tǒng)計(jì)
分析:(Ⅰ)利用所給數(shù)據(jù),可計(jì)算平均數(shù),9名女生身高從小到大排列,可得9名女生身高的中位數(shù);
(Ⅱ)確定從7人中任取2人的事件總數(shù)和2人全是男生的事件數(shù),利用古典概型公式即可求出P.
解答: 解:(Ⅰ)6名男生的平均身高為
178+173+176+180+186+193
6
=181;
∵9名女生身高為162,163,166,167,168,170,176,184,185,
∴9名女生身高的中位數(shù)為168;
(Ⅱ)進(jìn)入下一環(huán)節(jié)應(yīng)聘的男生3人,女生4人,
從7人中任取2人的事件總數(shù)為
C
2
7
=21
,
2人全是男生的事件數(shù)為3.
設(shè)2人全為男生的事件為A,
P(A)=
3
21
=
1
7
,
P=1-
1
7
=
6
7
點(diǎn)評:本題考查莖葉圖,考查古典概型的計(jì)算公式,考查學(xué)生的計(jì)算能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中,假命題為( 。
A、?x∈R,x2+x+1>0
B、存在四邊相等的四邊形不是正方形
C、若x,y∈R,且x+y>2,則x,y至少有一個(gè)大于1
D、a+b=0的充要條件是
a
b
=-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
3
x3-
a
2
x2
(Ⅰ)當(dāng)a=2時(shí),求曲線y=f(x)在點(diǎn)P(3,f(3))處的切線方程;
(Ⅱ)若函數(shù)f(x)與g(x)=
1
2
x2-ax+
a2
2
的圖象有三個(gè)不同的交點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A,B分別是橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左,右頂點(diǎn),點(diǎn)D(1,
3
2
)
在橢圓C上,且直線DA與直線DB的斜率之積為-
b2
4

(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)點(diǎn)P為橢圓C上除長軸端點(diǎn)外的任一點(diǎn),直線AP,PB與橢圓的右準(zhǔn)線分別交于點(diǎn)M,N.
①在x軸上是否存在一個(gè)定點(diǎn)E,使得EM⊥EN?若存在,求點(diǎn)E的坐標(biāo);若不存在,說明理由;
②已知常數(shù)λ>0,求
PM
PN
PA
PB
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)A(0,-
3
4
),點(diǎn)B,C分別是x軸和y軸上的動(dòng)點(diǎn),且
AB
BC
=0,動(dòng)點(diǎn)P滿足
BC
=
1
2
CP
,設(shè)動(dòng)點(diǎn)P的軌跡為E.
(1)求曲線E的方程;
(2)點(diǎn)Q(1,a),M,N為曲線E上不同的三點(diǎn),且QM⊥QN,過M,N兩點(diǎn)分別作曲線E的切線,記兩切線的交點(diǎn)為D,求|OD|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:3x2+y2=12,直線x-y-2=0交橢圓C于A,B兩點(diǎn).
(Ⅰ)求橢圓C的焦點(diǎn)坐標(biāo)及長軸長;
(Ⅱ)求以線段AB為直徑的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)過點(diǎn)(2,0),且橢圓C的離心率為
1
2

(Ⅰ)求橢圓C的方程;
(Ⅱ)若動(dòng)點(diǎn)P在直線x=-1上,過P作直線交橢圓C于M、N兩點(diǎn),且
MP
=
PN
,再過P作直線l⊥MN.證明:直線l恒過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C:y2=4x的焦點(diǎn)為F,過點(diǎn)F的直線l交拋物線C于點(diǎn)P,Q.
(Ⅰ)若|PF|=3(點(diǎn)P在第一象限),求直線l的方程;
(Ⅱ)求證:
OP
OQ
為定值(點(diǎn)O為坐標(biāo)原點(diǎn)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題:
①“若ma2>na2,則m>n”的逆否命題;
②“若A與B是互斥事件,則A與B是對立事件”的逆命題;
③“在等差數(shù)列{an}中,若m+k=p+h,則am+ak=ap+ah”的否命題;
④“若|2x+2|<a的必要不充分條件是|x+1|<b(a>0,b>0),則2b<a”的逆否命題.
其中是假命題個(gè)數(shù)有( 。
A、0B、3C、2D、1

查看答案和解析>>

同步練習(xí)冊答案