9.若定義在R上的奇函數(shù)f(x)滿足:?x1,x2∈R,且x1≠x2,都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}>0$,則稱該函數(shù)為滿足約束條件K的一個“K函數(shù)”.有下列函數(shù):①f(x)=x+1;②f(x)=-x3;③f(x)=$\frac{1}{x}$;④f(x)=x|x|.其中為“K函數(shù)”的是.
A.B.C.D.

分析 由K函數(shù)的定義可知K函數(shù)滿足三個條件:1,定義域為R,2,f(x)是增函數(shù),3,f(x)是奇函數(shù).

解答 解:∵?x1,x2∈R,且x1≠x2,都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}>0$,
∴f(x)為定義域為R的增函數(shù),且f(x)為奇函數(shù).
∵f(x)=x+1不是奇函數(shù),∴f(x)=x+1不是“K函數(shù)“.
∵f(x)=-x3在R上是減函數(shù),∴f(x)=-x3不是“K函數(shù)“.
∵f(x)=$\frac{1}{x}$的定義域為{x|x≠0},∴f(x)=$\frac{1}{x}$不是“K函數(shù)“.
∵f(x)=x|x|=$\left\{\begin{array}{l}{-{x}^{2},x<0}\\{{x}^{2},x≥0}\end{array}\right.$,∴f(x)=x|x|是“K函數(shù)“.
故選:D.

點評 本題考查了函數(shù)定義域,單調(diào)性,奇偶性的判斷,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在三角形ABC中,a,b,c分別為角A、B、C的對邊,
(Ⅰ)若sin(B+C)-$\sqrt{3}$cosA=0,求角A的大;
(Ⅱ)若A=$\frac{π}{3}$,a=$\sqrt{3}$,b=2,求三角形ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.等比數(shù)列{an}中,a4+a9=-8,a7+a12=1,則公比q=(  )
A.-$\frac{1}{2}$B.-2C.$\frac{1}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.設(shè)集合A={x||x-1|<2},B={y|y=2x,x∈[0,2]},則A∩B=[1,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.求下列向量的數(shù)量積:
(1)$\overrightarrow{a}$=(2,-3),$\overrightarrow$=(1,3);
(2)$\overrightarrow{a}$=(2,-1),$\overrightarrow$=(1,2);
(3)$\overrightarrow{a}$=(4,2),$\overrightarrow$=(-2,-3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2},x≤0}\\{0,x>0}\end{array}\right.$,則f(-2)=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知α終邊上存在一點P(1,2),計算:
(1)$\frac{2sinα-cosα}{sinα+cosα}$;
(2)sin2α+sinαcosα-2cos2α

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知拋物線E:y2=2px(p>0)上一點M ( x0,4)到焦點F 的距離|MF|=$\frac{5}{4}$x0
(Ⅰ)求E 的方程;
(Ⅱ)過F 的直線l 與E 相交于A,B 兩點,AB 的垂直平分線l′與E相交于C,D 兩點,若$\overrightarrow{AC}•\overrightarrow{AD}$=0,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知拋物線C:y2=4x的焦點為F,直線AB過點與拋物線C交拋物線于A,B兩點,且AB=6,若AB的垂直平分線交x軸于P點,則|$\overrightarrow{OP}$|=4.

查看答案和解析>>

同步練習(xí)冊答案