分析 由題意可得,兩圓的圓心距大于兩圓的半徑之差而小于兩圓的半徑之和,即 4-1<$\sqrt{{(a+2)}^{2}{+(5-a)}^{2}}$<4+1,花簡(jiǎn)求得a的范圍.
解答 解:由題意可得,兩圓的圓心距大于兩圓的半徑之差而小于兩圓的半徑之和,
即 4-1<$\sqrt{{(a+2)}^{2}{+(5-a)}^{2}}$<4+1,即 9<2a2-6a+29<25,即 $\left\{\begin{array}{l}{{2a}^{2}-6a+20>0}\\{{2a}^{2}-6a+4<0}\end{array}\right.$,
求得1<a<2,
故答案為:(1,2).
點(diǎn)評(píng) 本題主要考查圓和圓的位置關(guān)系的判斷方法,兩點(diǎn)間的距離公式,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-1,0) | B. | (0,-1) | C. | (1,1) | D. | (-1,-1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 30° | B. | 45° | C. | 60° | D. | 90° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | C${\;}_{5}^{2}$ | B. | A${\;}_{5}^{2}$ | C. | 35 | D. | 52 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0.2 | B. | 0.4 | C. | 2 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2 | C. | $\sqrt{2}$ | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com