已知函數(shù),,
(1)若為奇函數(shù),求的值;
(2)若=1,試證在區(qū)間上是減函數(shù);
(3)若=1,試求在區(qū)間上的最小值.

(1)
(2)利用“定義法”證明。在區(qū)間上是減函數(shù)
(3) 若,由(2)知在區(qū)間上是減函數(shù),在區(qū)間上,當(dāng)時(shí),有最小值,且最小值為2。

解析試題分析:(1)當(dāng)時(shí),,若為奇函數(shù),則
,所以
(2)若,則=
設(shè)為, =

,∴>0
所以,,因此在區(qū)間上是減函數(shù)
(3) 若,由(2)知在區(qū)間上是減函數(shù),下面證明在區(qū)間上是增函數(shù).
設(shè) , =
,


所以 ,
因此在區(qū)間上上是增函數(shù)
因此,在區(qū)間上,當(dāng)時(shí),有最小值,且最小值為2
考點(diǎn):函數(shù)的奇偶性、單調(diào)性及其應(yīng)用
點(diǎn)評(píng):中檔題,研究函數(shù)的奇偶性,要注意定義域關(guān)于原點(diǎn)對(duì)稱。利用定義法研究函數(shù)的單調(diào)性,要注意遵循“設(shè),作差,變形,定號(hào),結(jié)論”等步驟,關(guān)鍵是變形與定號(hào)。函數(shù)的單調(diào)性的基本應(yīng)用之一是求函數(shù)的最值。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知是定義在上的奇函數(shù),且,若,恒成立.
(1)判斷上是增函數(shù)還是減函數(shù),并證明你的結(jié)論;
(2)若對(duì)所有恒成立,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)為常數(shù)).
(1)當(dāng)時(shí),求的單調(diào)遞減區(qū)間;
(2)若,且對(duì)任意的恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(Ⅰ)求函數(shù)的單調(diào)遞增區(qū)間;
(Ⅱ)當(dāng)時(shí),在曲線上是否存在兩點(diǎn),使得曲線在兩點(diǎn)處的切線均與直線交于同一點(diǎn)?若存在,求出交點(diǎn)縱坐標(biāo)的取值范圍;若不存在,請(qǐng)說明理由;
(Ⅲ)若在區(qū)間存在最大值,試構(gòu)造一個(gè)函數(shù),使得同時(shí)滿足以下三個(gè)條件:①定義域,且;②當(dāng)時(shí),;③在中使取得最大值時(shí)的值,從小到大組成等差數(shù)列.(只要寫出函數(shù)即可)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù),曲線在點(diǎn)處的切線方程為
(1)確定的值
(2)若過點(diǎn)(0,2)可做曲線的三條不同切線,求的取值范圍
(3)設(shè)曲線在點(diǎn)處的切線都過點(diǎn)(0,2),證明:當(dāng)時(shí),

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=2﹣|x|,無窮數(shù)列{an}滿足an+1=f(an),n∈N*
(1)若a1=0,求a2,a3,a4;
(2)若a1>0,且a1,a2,a3成等比數(shù)列,求a1的值
(3)是否存在a1,使得a1,a2,…,an,…成等差數(shù)列?若存在,求出所有這樣的a1,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知定義域?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/df/c/1kgq03.png" style="vertical-align:middle;" />的函數(shù)是奇函數(shù).
(Ⅰ)求實(shí)數(shù)的值;
(Ⅱ)判斷函數(shù)的單調(diào)性;
(Ⅲ)若對(duì)任意的,不等式恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(Ⅰ)若,求函數(shù)的極值;
(Ⅱ)若函數(shù)上有極值,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=x2+2ax+3,x∈[-4,6].
(1)當(dāng)a=-2時(shí),求f(x)的最值;
(2)求實(shí)數(shù)a的取值范圍,使y=f(x)在區(qū)間[-4,6]上是單調(diào)函數(shù);
(3)當(dāng)a=1時(shí),求f(|x|)的單調(diào)區(qū)間.

查看答案和解析>>

同步練習(xí)冊答案