【題目】已知函數(shù)為實(shí)數(shù),,.

1)當(dāng)函數(shù)的圖象過點(diǎn),且方程有且只有一個(gè)根,求的表達(dá)式;

2)在(1)的條件下,當(dāng)時(shí),是單調(diào)函數(shù),求實(shí)數(shù)的取值范圍;

3)若,當(dāng),,且函數(shù)為偶函數(shù)時(shí),試判斷能否大于?

【答案】123

【解析】

1)根據(jù),可得,再根據(jù)方程有且只有一個(gè)根,利用根的判別式再列出一個(gè)的關(guān)系式,聯(lián)立方程組即可解得的值.

2)首先求出的函數(shù)關(guān)系式,然后根據(jù)函數(shù)的單調(diào)性進(jìn)行解答,即可求出的取值范圍.

3)由為偶函數(shù),求出,設(shè),則,又知,故可得,最后把代入求出.

解:(1)因?yàn)?/span>,

所以.

因?yàn)榉匠?/span>有且只有一個(gè)根,

所以.

所以.

,.

所以.

2)因?yàn)?/span>

.

所以當(dāng)時(shí),

時(shí),是單調(diào)函數(shù).

3為偶函數(shù),所以.

所以.

所以.

因?yàn)?/span>,

不妨設(shè),則.

又因?yàn)?/span>,

所以.

所以.

此時(shí).

所以.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若數(shù)列對(duì)任意滿足,下面給出關(guān)于數(shù)列的四個(gè)命題:①可以是等差數(shù)列,②可以是等比數(shù)列;③可以既是等差又是等比數(shù)列;④可以既不是等差又不是等比數(shù)列;則上述命題中,正確的個(gè)數(shù)為(

A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知、是橢圓和雙曲線的公共焦點(diǎn),是他們的一個(gè)公共點(diǎn),且,則橢圓和雙曲線的離心率的倒數(shù)之和的最大值為___.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方體中,,分別是,的中點(diǎn).

1)求異面直線所成角的余弦值;

2)棱上是否存在點(diǎn),使得∥平面?請證明你的結(jié)論;

3)求直線與平面所成角的余弦值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某港口的水深(米)是時(shí)間,單位:小時(shí))的函數(shù),下面是每天時(shí)間與水深的關(guān)系表:

經(jīng)過長期觀測,可近似的看成是函數(shù)

1)根據(jù)以上數(shù)據(jù),求出的解析式;

2)若船舶航行時(shí),水深至少要米才是安全的,那么船舶在一天中的哪幾段時(shí)間可以安全的進(jìn)出該港?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)為了了解本年度數(shù)學(xué)競賽成績情況,從中隨機(jī)抽取了個(gè)學(xué)生的分?jǐn)?shù)作為樣本進(jìn)行統(tǒng)計(jì),按照,,,,的分組作出頻率分布直方圖如圖所示,已知得分在的頻數(shù)為20,且分?jǐn)?shù)在70分及以上的頻數(shù)為27.

(1)求樣本容量以及的值;

(2)在選取的樣本中,從競賽成績在80分以上(80)的學(xué)生中隨機(jī)抽取2名學(xué)生,求所抽取的2名學(xué)生中恰有一人得分在內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)是定義在[-1,1]上的奇函數(shù),當(dāng)x∈[-1,0]時(shí),函數(shù)的解析式為f(x)= (a∈R).

(1)試求a的值;

(2)寫出f(x)在[0,1]上的解析式;

(3)求f(x)在[0,1]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為奇函數(shù),為偶函數(shù),且.

1)求的解析式及定義域;

2)如函數(shù)在區(qū)間上為單調(diào)函數(shù),求實(shí)數(shù)的范圍.

3)若關(guān)于的方程有解,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,為保護(hù)河上古橋OA,規(guī)劃建一座新橋BC,同時(shí)設(shè)立一個(gè)圓形保護(hù)區(qū).規(guī)劃要求:新橋BC與河岸AB垂直;保護(hù)區(qū)的邊界為圓心M在線段OA上并與BC相切的圓,且古橋兩端OA到該圓上任意一點(diǎn)的距離均不少于80 m.經(jīng)測量,點(diǎn)A位于點(diǎn)O正北方向60 m,點(diǎn)C位于點(diǎn)O正東方向170 m(OC為河岸),tanBCO=.

1)求新橋BC的長;

2)當(dāng)OM多長時(shí),圓形保護(hù)區(qū)的面積最大?

查看答案和解析>>

同步練習(xí)冊答案