【題目】對于簡單隨機抽樣,下列說法正確的是(

①它要求被抽取樣本的總體的個體數(shù)有限;

②它是從總體中逐個進行抽取的,在實踐中操作起來也比較方便;

③它是一種不放回抽樣;

④它是一種等可能抽樣,在整個抽樣過程中,每個個體被抽到的機會相等,從而保證了這種抽樣方法的公平性.

A.①②③B.①②④C.①③④D.①②③④

【答案】D

【解析】

根據(jù)簡單隨機抽樣的特點進行判斷即可.

簡單隨機抽樣的特點知,①②③④正確.

故選:D

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】某中學為了了解全校學生的上網(wǎng)情況,在全校采用隨機抽樣的方法抽取了40名學生其中男女生人數(shù)恰好各占一半進行問卷調(diào)查,并進行了統(tǒng)計,按男女分為兩組,再將每組學生的月上網(wǎng)次數(shù)分為5組:,,,得到如圖所示的頻率分布直方圖:

(1)寫出的值;

(2)求抽取的40名學生中月上網(wǎng)次數(shù)不少于15次的學生人數(shù);

在抽取的40名學生中,從月上網(wǎng)次數(shù)不少于20次的學生中隨機抽取2人 ,求至少抽到1名女生的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知中心在坐標原點,焦點在軸上的橢圓,離心率為且過點,過定點的動直線與該橢圓相交于兩點.

(1)若線段中點的橫坐標是,求直線的方程;

(2)在軸上是否存在點,使為常數(shù)?若存在,求出點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】脫貧是政府關(guān)注民生的重要任務,了解居民的實際收入狀況就顯得尤為重要.現(xiàn)從某地區(qū)隨機抽取個農(nóng)戶,考察每個農(nóng)戶的年收入與年積蓄的情況進行分析,設(shè)第個農(nóng)戶的年收入(萬元),年積蓄(萬元),經(jīng)過數(shù)據(jù)處理得

(Ⅰ)已知家庭的年結(jié)余對年收入具有線性相關(guān)關(guān)系,求線性回歸方程;

(Ⅱ)若該地區(qū)的農(nóng)戶年積蓄在萬以上,即稱該農(nóng)戶已達小康生活,請預測農(nóng)戶達到小康生活的最低年收入應為多少萬元?

附:在 中, 其中為樣本平均值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中, 底面,底面是直角梯形,

1)在上確定一點,使得平面,并求的值;

2)在(1)條件下,求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】海州市英才中學某興趣小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,他們分別到氣象局與某醫(yī)院抄錄了月份每月號的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下資料:

日期

晝夜溫差

就診人數(shù)

該興趣小組確定的研究方案是:先從這六組數(shù)據(jù)中選取組,用剩下的組數(shù)據(jù)求線性回歸方程,再用被選取的組數(shù)據(jù)進行檢驗.

1求選取的組數(shù)據(jù)恰好是相鄰兩個月的概率;

2若選取的是月與6月的兩組數(shù)據(jù),請根據(jù)月份的數(shù)據(jù),求出關(guān)于的線性回歸方程;

3若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過人,則認為得到的線性回歸方程是理想的,試問該小組所得線性回歸方程是否理想.

其中回歸系數(shù)公式,,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點是圓上任意一點是圓心,點與點關(guān)于原點對稱線段的中垂線分別與交于兩點

1求點的軌跡的方程;

2直線經(jīng)過,與拋物線交于兩點,與交于兩點當以為直徑的圓經(jīng)過時,求

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列中各項都大于1,前項和為,且滿足.

1求數(shù)列的通項公式;

2,求數(shù)列的前項和;

3求使得對所有都成立的最小正整數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】學校為測評班級學生對任課教師的滿意度,采用100分制打分的方式來計分,規(guī)定滿意度不低于98分,則評價該教師為優(yōu)秀,現(xiàn)從某班學生中隨機抽取10名,以下莖葉圖記錄了他們對某教師的滿意度分數(shù)(以十位數(shù)字為莖,個位數(shù)字為葉);

(1)指出這組數(shù)據(jù)的眾數(shù)和中位數(shù)

(2)求從這10人中隨機選取3人,至多有1人評價該教師是優(yōu)秀的概率;

(3)以這10人的樣本數(shù)據(jù)來估計整個班級的總體數(shù)據(jù),若從該班任選3人,記表示抽到評價該教師為優(yōu)秀的人數(shù),求的分布列及數(shù)學期望.

查看答案和解析>>

同步練習冊答案