分析 將通項化為$\frac{1}{4}$($\frac{1}{2n-1}$-$\frac{1}{2n+3}$),運用裂項相消求和,計算即可得到所求.
解答 解:$\frac{1}{4{n}^{2}+4n-3}$=$\frac{1}{4}$($\frac{1}{2n-1}$-$\frac{1}{2n+3}$),
即有原式=$\frac{1}{4}$(1-$\frac{1}{5}$+$\frac{1}{3}$-$\frac{1}{7}$+$\frac{1}{5}$-$\frac{1}{11}$+…+$\frac{1}{2n-3}$-$\frac{1}{2n+1}$+$\frac{1}{2n-1}$-$\frac{1}{2n+3}$)
=$\frac{1}{4}$(1+$\frac{1}{3}$-$\frac{1}{2n+1}$-$\frac{1}{2n+3}$)
=$\frac{1}{3}$-$\frac{1}{4}$($\frac{1}{2n+1}$+$\frac{1}{2n+3}$).
故答案為:$\frac{1}{3}$-$\frac{1}{4}$($\frac{1}{2n+1}$+$\frac{1}{2n+3}$).
點評 本題考查數(shù)列的求和方法:裂項相消求和,考查運算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | f(x)=1,g(x)=x0 | B. | f(x)=$\frac{{x}^{2}}{x}$,g(x)=$\root{3}{{x}^{3}}$ | C. | f(x)=1gx2,g(x)=21gx | D. | f(x)=|x|,g(x)=$\sqrt{{x}^{2}}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com