A. | 1+2+3+…+(2k-1)+[2(k+1)-1]=2k2-k+2(k+1)2-(k+1) | |
B. | 1+2+3+…+(2k-1)+[2(k+1)-1]=2(k+1)2-(k+1) | |
C. | 1+2+3+…+(2k-1)+2k+[2(k+1)-1]=2k2-k+2(k+1)2-(k+1) | |
D. | 1+2+3+…+(2k-1)+2k+[2(k+1)-1]=2(k+1)2-(k+1) |
分析 由數(shù)學(xué)歸納法可知n=k時,1+2+3+…+2k-1=2k2+k,到n=k+1時,左端為1+2+3+…+2k-1+2k+2k+1從而可得答案.
解答 解:∵用數(shù)學(xué)歸納法證明等式1+2+3+…+2n-1=2n2-n時,
假設(shè)n=k時,命題成立,1+2+3+…+2k-1=2k2-k,
則當(dāng)n=k+1時,左端為1+2+3+…+2k-1+2k+2k+1,
∴從“k→k+1”需增添的項是2k+2k+1,
∴1+2+3+…+(2k-1)+2k+[2(k+1)-1]=2(k+1)2-(k+1)
故選:D.
點評 本題考查數(shù)學(xué)歸納法,著重考查理解與觀察能力,考查推理證明的能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既非充分又非必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\overrightarrow{AD}$ | B. | $\overrightarrow{ED}$ | C. | $\overrightarrow{BE}$ | D. | $\overrightarrow{BC}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $C_n^k$ | B. | $C_n^k$2n-k5k | ||
C. | $C_n^{k-1}$ | D. | $C_n^{k-1}$2n+1-k5k-1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com