2.如圖所示,在底面是菱形的直四棱柱ABCD-A1B1C1D1中,底面的邊長(zhǎng)為a,且有一個(gè)角為120°,側(cè)棱長(zhǎng)為2a,在空間直角坐標(biāo)系中確定點(diǎn)A1,D,C的坐標(biāo).

分析 利用幾何體與空間直角坐標(biāo)系,求解所求點(diǎn)的坐標(biāo)即可.

解答 解:底面是菱形的直四棱柱ABCD-A1B1C1D1中,底面的邊長(zhǎng)為a,且有一個(gè)角為120°,側(cè)棱長(zhǎng)為2a,
在空間直角坐標(biāo)系中點(diǎn)A1($\frac{\sqrt{3}}{2}a$,-$\frac{1}{2}a$,0)
D($\frac{\sqrt{3}}{2}a$,$\frac{1}{2}a$,2a),
C(0,a,2a).

點(diǎn)評(píng) 本題考查空間點(diǎn)的坐標(biāo)的求法,注意幾何體的形狀,底面的特征是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知f(x)是R奇函數(shù),對(duì)x∈R都有f(x+4)=f(x)+f(2)成立,若f(1)=2,則f(2015)等于-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知函數(shù)f(x)=$\frac{x+a}{{x}^{2}+2x+2}$.
(I)證明:對(duì)任意實(shí)數(shù)a,存在(α,β),α<β,使得函數(shù)f(x)在(α,β)上是增函數(shù);
(Ⅱ)若方程f(x)=x-1有三個(gè)不同實(shí)數(shù)根,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.若f(x)=3x3+2x2+x+4,則f(9)=2362.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知△ABC中,M為線段BC上一點(diǎn),AM=BM,$\overrightarrow{AM}$•$\overrightarrow{AB}$=2,AC2+3BC2=4,則△ABC的面積最大值為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.在等比數(shù)列{an}中,已知a1=5,a9•a10=100,求a18

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.設(shè)x,y滿足約束條件$\left\{\begin{array}{l}{x-2y≥-2}\\{3x-2y≤3}\\{x+y≥1}\end{array}\right.$,若x+2y≥a恒成立,則實(shí)數(shù)a的最大值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.如圖,已知四邊形ABEF為矩形,四邊形ABCD為直角梯形,平面ABEF⊥平面ABCD,∠BAD=90°,AB∥CD,AF=BC=2,CD=3,AB=4.
(1)求證:AC⊥平面BCE;
(2)求三棱錐E-BCF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.為降低霧霾等惡劣氣候?qū)用竦挠绊,某公司研發(fā)了一種新型防霧霾產(chǎn)品.每一臺(tái)新產(chǎn)品在進(jìn)入市場(chǎng)前都必須進(jìn)行兩種不同的檢測(cè),只有兩種檢測(cè)都合格才能進(jìn)行銷售,否則不能銷售.已知該新型防霧霾產(chǎn)品第一種檢測(cè)不合格的概率為$\frac{1}{6}$,第二種檢測(cè)不合格的概率為$\frac{1}{10}$,兩種檢測(cè)是否合格相互獨(dú)立.
(Ⅰ)求每臺(tái)新型防霧霾產(chǎn)品不能銷售的概率;
(Ⅱ)如果產(chǎn)品可以銷售,則每臺(tái)產(chǎn)品可獲利40元;如果產(chǎn)品不能銷售,則每臺(tái)產(chǎn)品虧損80元(即獲利-80元).現(xiàn)有該新型防霧霾產(chǎn)品3臺(tái),隨機(jī)變量X表示這3臺(tái)產(chǎn)品的獲利,求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案