已知拋物線的頂在坐標原點,焦點到直線的距離是
(1)求拋物線的方程;
(2)若直線與拋物線交于兩點,設線段的中垂線與軸交于點 ,求的取值范圍.
科目:高中數(shù)學 來源: 題型:解答題
已知雙曲線的一條漸近線方程是,它的一個焦點在拋物線的準線上,點是雙曲線右支上相異兩點,且滿足為線段的中點,直線的斜率為
(1)求雙曲線的方程;
(2)用表示點的坐標;
(3)若,的中垂線交軸于點,直線交軸于點,求的面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓的左、右焦點分別為,離心率為,P是橢圓上一點,且面積的最大值等于2.
(1)求橢圓的方程;
(2)過點M(0,2)作直線與直線垂直,試判斷直線與橢圓的位置關系5
(3)直線y=2上是否存在點Q,使得從該點向橢圓所引的兩條切線相互垂直?若存在,求點Q的坐標;若不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓:的左、右焦點分別為、,橢圓上的點滿足,且△的面積為.
(Ⅰ)求橢圓的方程;
(Ⅱ)設橢圓的左、右頂點分別為、,過點的動直線與橢圓相交于、兩點,直線與直線的交點為,證明:點總在直線上.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知是拋物線上的兩個點,點的坐標為,直線的斜率為.設拋物線的焦點在直線的下方.
(Ⅰ)求k的取值范圍;
(Ⅱ)設C為W上一點,且,過兩點分別作W的切線,記兩切線的交點為. 判斷四邊形是否為梯形,并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知點,,動點G滿足.
(Ⅰ)求動點G的軌跡的方程;
(Ⅱ)已知過點且與軸不垂直的直線l交(Ⅰ)中的軌跡于P,Q兩點.在線段上是否存在點,使得以MP,MQ為鄰邊的平行四邊形是菱形?若存在,求實數(shù)m的取值范圍;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com