已知是拋物線上的兩個點,點的坐標為,直線的斜率為.設拋物線的焦點在直線的下方.
(Ⅰ)求k的取值范圍;
(Ⅱ)設C為W上一點,且,過兩點分別作W的切線,記兩切線的交點為. 判斷四邊形是否為梯形,并說明理由.

(Ⅰ);(2)四邊形不可能為梯形,理由詳見解析.

解析試題分析:(Ⅰ)(Ⅰ)直線過點,且斜率為k,所以直線方程可設為,若焦點在直線的下方,則滿足不等式,代入求的范圍;(Ⅱ)設直線的方程為,分別與拋物線聯(lián)立,因為直線和拋物線的一個交點坐標已知,故可利用韋達定理求出切點的橫坐標,則可求在點處的切線斜率,若四邊形是否為梯形,則有得,根據(jù)斜率相等列方程,所得方程無解,故四邊形不是梯形.
試題解析:(Ⅰ)解:拋物線的焦點為.由題意,得直線的方程為,
,得,即直線與y軸相交于點.因為拋物線的焦點在直線的下方,
所以,解得,因為,所以.
(Ⅱ)解:結論:四邊形不可能為梯形.理由如下:
假設四邊形為梯形.由題意,設,
聯(lián)立方程,消去y,得,由韋達定理,得,所以.
同理,得.對函數(shù)求導,得,所以拋物線在點處的切線的斜率為,拋物線在點處的切線的斜率為.
由四邊形為梯形,得.
,則,即,因為方程無解,所以不平行.
,則,即,因為方程無解,所以不平行.所以四邊形不是梯形,與假設矛盾.因此四邊形不可能為梯形.
考點:1、直線的方程;2、直線和拋物線的位置關系;3、導數(shù)的幾何意義.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓的離心率為,左右焦點分別為,且.
(1)求橢圓C的方程;
(2)過點的直線與橢圓相交于兩點,且,求的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知拋物線的頂在坐標原點,焦點到直線的距離是
(1)求拋物線的方程;
(2)若直線與拋物線交于兩點,設線段的中垂線與軸交于點 ,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知線段MN的兩個端點M、N分別在軸、軸上滑動,且,點P在線段MN上,滿足,記點P的軌跡為曲線W.
(1)求曲線W的方程,并討論W的形狀與的值的關系;
(2)當時,設A、B是曲線W與軸、軸的正半軸的交點,過原點的直線與曲線W交于C、D兩點,其中C在第一象限,求四邊形ACBD面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓C:的一個焦點是(1,0),兩個焦點與短軸的一個端點構成等邊三角形.
(1)求橢圓C的方程;
(2)過點Q(4,0)且不與坐標軸垂直的直線l交橢圓C于A、B兩點,設點A關于x軸的
對稱點為A1.求證:直線A1B過x軸上一定點,并求出此定點坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在平面直角坐標系中,已知過點的橢圓的右焦點為,過焦點且與軸不重合的直線與橢圓交于,兩點,點關于坐標原點的對稱點為,直線分別交橢圓的右準線,兩點.

(1)求橢圓的標準方程;
(2)若點的坐標為,試求直線的方程;
(3)記兩點的縱坐標分別為,,試問是否為定值?若是,請求出該定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓的左、右焦點分別為,為原點.
(1)如圖1,點為橢圓上的一點,的中點,且,求點軸的距離;

(2)如圖2,直線與橢圓相交于、兩點,若在橢圓上存在點,使四邊形為平行四邊形,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓的離心率為,右焦點為,右頂點在圓上.
(Ⅰ)求橢圓和圓的方程;
(Ⅱ)已知過點的直線與橢圓交于另一點,與圓交于另一點.請判斷是否存在斜率不為0的直線,使點恰好為線段的中點,若存在,求出直線的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在拋物線y2=4x上恒有兩點關于直線l:y=kx+3對稱,求k的范圍.

查看答案和解析>>

同步練習冊答案