【題目】已知△ABC的兩個頂點(diǎn)A,B的坐標(biāo)分別為(,0),(,0),圓E是△ABC的內(nèi)切圓,在邊AC,BC,AB上的切點(diǎn)分別為P,Q,R,|CP|=2,動點(diǎn)C的軌跡為曲線G.
(1)求曲線G的方程;
(2)設(shè)直線l與曲線G交于M,N兩點(diǎn),點(diǎn)D在曲線G上,是坐標(biāo)原點(diǎn),判斷四邊形OMDN的面積是否為定值?若為定值,求出該定值;如果不是,請說明理由.
【答案】(1).(2)四邊形OMDN的面積是定值,其定值為.
【解析】
(1)根據(jù)三角形內(nèi)切圓的性質(zhì)證得,由此判斷出點(diǎn)的軌跡為橢圓,并由此求得曲線的方程.
(2)將直線的斜率分成不存在或存在兩種情況,求出平行四邊形的面積,兩種情況下四邊形的面積都為,由此證得四邊形的面積為定值.
(1)因?yàn)閳AE為△ABC的內(nèi)切圓,所以|CA|+|CB|=|CP|+|CQ|+|PA|+|QB|=2|CP|+|AR|+|BR|=2|CP|+|AB|=4>|AB|
所以點(diǎn)C的軌跡為以點(diǎn)A和點(diǎn)B為焦點(diǎn)的橢圓(點(diǎn)不在軸上),
所以c,a=2,b,
所以曲線G的方程為,
(2)因?yàn)?/span>,故四邊形為平行四邊形.
當(dāng)直線l的斜率不存在時,則四邊形為為菱形,
故直線MN的方程為x=﹣1或x=1,
此時可求得四邊形OMDN的面積為.
當(dāng)直線l的斜率存在時,設(shè)直線l方程是y=kx+m,
代入到,得(1+2k2)x2+4kmx+2m2﹣4=0,
∴x1+x2,x1x2,△=8(4k2+2﹣m2)>0,
∴y1+y2=k(x1+x2)+2m,|MN|
點(diǎn)O到直線MN的距離d,
由,得xD,yD,
∵點(diǎn)D在曲線C上,所以將D點(diǎn)坐標(biāo)代入橢圓方程得1+2k2=2m2,
由題意四邊形OMDN為平行四邊形,
∴OMDN的面積為S,
由1+2k2=2m2得S,
故四邊形OMDN的面積是定值,其定值為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校從高一年級期末考試的學(xué)生中抽出60名學(xué)生,其成績(均為整數(shù))的頻率分布直方圖如圖所示.
(1)估計(jì)這次考試的平均分;
(2)假設(shè)分?jǐn)?shù)在[90,100]的學(xué)生的成績都不相同,且都在94分以上,現(xiàn)用簡單隨機(jī)抽樣方法,從95,76,97,88,69,100這6個數(shù)中任取2個數(shù),求這2個數(shù)恰好是兩個學(xué)生的成績的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)關(guān)于的一元二次方程.
(1)若是從四個數(shù)中任取的一個數(shù),是從三個數(shù)中任取的一個數(shù),求上述方程有兩個不等實(shí)根的概率.
(2)若是從區(qū)間任取的一個數(shù),是從區(qū)間任取的一個數(shù),求上述方程有實(shí)根的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在三棱錐中,底面,,,是的中點(diǎn),是線段上的一點(diǎn),且,連接,,.
(1)求證:平面;
(2)求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)設(shè)函數(shù)(),討論的極值點(diǎn)個數(shù);
(2)設(shè)直線為函數(shù)的圖像上一點(diǎn)處的切線,試探究:在區(qū)間上是否存在唯一的,使得直線與曲線相切.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)若是函數(shù)的極值點(diǎn),求的極小值;
(2)若對任意的實(shí)數(shù)a,函數(shù)在上總有零點(diǎn),求實(shí)數(shù)b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】西安市自2017年5月啟動對“車不讓人行為”處罰以來,斑馬線前機(jī)動車搶行不文明行為得以根本改變,斑馬線前禮讓行人也成為了一張新的西安“名片”.
但作為交通重要參與者的行人,闖紅燈通行卻頻有發(fā)生,帶來了較大的交通安全隱患及機(jī)動車通暢率降低,交警部門在某十字路口根據(jù)以往的檢測數(shù)據(jù),得到行人闖紅燈的概率約為0.4,并從穿越該路口的行人中隨機(jī)抽取了200人進(jìn)行調(diào)查,對是否存在闖紅燈情況得到列聯(lián)表如下:
30歲以下 | 30歲以上 | 合計(jì) | |
闖紅燈 | 60 | ||
未闖紅燈 | 80 | ||
合計(jì) | 200 |
近期,為了整頓“行人闖紅燈”這一不文明及項(xiàng)違法行為,交警部門在該十字路口試行了對闖紅燈行人進(jìn)行經(jīng)濟(jì)處罰,并從試行經(jīng)濟(jì)處罰后穿越該路口行人中隨機(jī)抽取了200人進(jìn)行調(diào)查,得到下表:
處罰金額(單位:元) | 5 | 10 | 15 | 20 |
闖紅燈的人數(shù) | 50 | 40 | 20 | 0 |
將統(tǒng)計(jì)數(shù)據(jù)所得頻率代替概率,完成下列問題.
(Ⅰ)將列聯(lián)表填寫完整(不需寫出填寫過程),并根據(jù)表中數(shù)據(jù)分析,在未試行對闖紅燈行人進(jìn)行經(jīng)濟(jì)處罰前,是否有99.9%的把握認(rèn)為闖紅燈與年齡有關(guān);
(Ⅱ)當(dāng)處罰金額為10元時,行人闖紅燈的概率會比不進(jìn)行處罰降低多少;
(Ⅲ)結(jié)合調(diào)查結(jié)果,談?wù)勅绾沃卫硇腥岁J紅燈現(xiàn)象.
參考公式: ,其中
參考數(shù)據(jù):
0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
1.132 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知橢圓C: (a>b>0)的離心率為,橢圓C截直線y=1所得線段的長度為.
(Ⅰ)求橢圓C的方程;
(Ⅱ)動直線l:y=kx+m(m≠0)交橢圓C于A,B兩點(diǎn),交y軸于點(diǎn)M.點(diǎn)N是M關(guān)于O的對稱點(diǎn),⊙N的半徑為|NO|. 設(shè)D為AB的中點(diǎn),DE,DF與⊙N分別相切于點(diǎn)E,F,求EDF的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com