如圖,多面體EF-ABCD中,已知ABCD是邊長為4的正方形,EF∥AB,平面FBC⊥平面ABCD,EF=2.
(1)若M、N分別是AB、CD的中點,求證:平面MNE∥平面BCF;
(2)若△BCF中,BC邊上的高FH=3,求多面體的體積.
考點:棱柱、棱錐、棱臺的體積,平面與平面平行的判定
專題:空間位置關系與距離
分析:(1)由ABCD是正方形,M、N是AB、CD中點,得MN∥BC,從而BFEM是平行四邊形,由此能證明平面MNE∥平面BCF.
(2)分別求出四棱錐E-AMND的體積和三棱柱MNE-BCF的體積,由此能求出多面體EF-ABCD的體積.
解答: (1)證明:∵ABCD是正方形,M、N是AB、CD中點,
∴MN∥BC,
∵MB=2=EF,EF∥AB,
∴BFEM是平行四邊形,
∴ME∥BF,
∵MN,ME?平面MNE,BC,BF?平面BCF,
∴平面MNE∥平面BCF
(2)解:∵EF∥AB,
∴四棱錐E-AMND的高就是FH,
∴四棱錐E-AMND的體積V1=
1
3
×
2×4×3=8,
∵平面FBC⊥平面ABCD,
∴MB就是三棱柱MNE-BCF的高,
∴三棱柱MNE-BCF的體積V2=4×3÷2×2=12,
∴多面體EF-ABCD的體積V=V1+V2=20.
點評:本題考查平面與平面平行的證明,考查幾何體的體積的求法,是中檔題,解題時要認真審題,注意空間思維能力的培養(yǎng).
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

證明:若集合M={(x,y)|x+y=0},N={(x,y)|x2+y2=0},則有M∪N=M.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

平面上,到點F(1,0)的距離與它到直線l:x=-1的距離相等的動點P的軌跡記作曲線C.
(1)求曲線C的方程;
(2)若傾斜角為
π
4
的直線m過點F,且與曲線C相交于A,B兩點,求線段AB的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設a∈Z,且0≤a<13,若512014+a能被13整除,則a=(  )
A、11B、12C、1D、3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知兩個圓錐有公共底面,且兩圓錐的頂點和底面的圓周都在同一個球面上.這兩個圓錐中,體積較小者的高與體積較大者的高的比值為
1
3
,則體積較小的圓錐與球的體積之比為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一水平放置的平面圖形,用斜二測畫法畫出了它的直觀圖,此直觀圖恰好是一個邊長為2的正方形,如圖則原平面圖形的面積為(  )
A、2
B、3
C、8
D、8
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=sinx與y=cosx,它們的周期是
 
,定義域是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(2,3,4),
b
=(-1,m,2)相互垂直,則m=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=sin(ωx+φ) 圖象的相鄰兩條對稱軸之間的距離等于
π
3
,cos(φ+
π
4
)=0,其中ω>0,|φ|<
π
2

(1)求函數(shù)f(x)的解析式;
(2)求最小正實數(shù)m,使得函數(shù)f(x)的圖象向左平移m個單位后所對應的函數(shù)是偶函數(shù).

查看答案和解析>>

同步練習冊答案