【題目】用細鋼管焊接而成的花壇圍欄構(gòu)件如圖所示,它的外框是一個等腰梯形PQRS,內(nèi)部是一段拋物線和一根橫梁,拋物線的頂點與梯形上底中點是焊接點O,梯形的腰緊靠在拋物線上,兩條腰的中點是梯形的腰、拋物線以及橫梁的焊接點A,B,拋物線與梯形下底的兩個焊接點為C,D,已知梯形的高是40厘米,C,D兩點間的距離為40厘米.

1)求橫梁AB的長度;

2)求梯形外框的用料長度;

(注:細鋼管的粗細等因素忽略不計,結(jié)果精確到1厘米)

【答案】(1);(2.

【解析】

1)以為坐標原點建立直角坐標系,利用拋物線方程求出點坐標,即可求出橫梁的長度;

(2)求出直線的方程,利用直線方程求出點坐標,即可求出梯形外框的長度.

1)如圖所示以為坐標原點建立直角坐標系,

設(shè)拋物線方程為,

由題知在拋物線上滿足拋物線方程,

所以點代入拋物線方程有,

得到拋物線方程為,

因為點都在拋物線上,且點,的縱坐標都為,

所以當時,有,

,,

故橫梁的長度為.

2)由題知點,是梯形與拋物線的公共點,且梯形的腰與拋物線相切,

設(shè)直線

因為拋物線方程為,

聯(lián)立方程組為

整理得,

故直線,

時,解得,故點,

時,解得,故點,

,,,

因為梯形關(guān)于軸對稱,

所以梯形的周長為.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】某市為了引導居民合理用水,居民生活用水實行二級階梯式水價計量方法,具體如下;第一階梯,每戶居民每月用水量不超過12噸,價格為4元/噸;第二階梯,每戶居民用水量超過12噸,超過部分的價格為8元/噸,為了了解全是居民月用水量的分布情況,通過抽樣獲得了100戶居民的月用水量(單位:噸),將數(shù)據(jù)按照(全市居民月用水量均不超過16噸)分成8組,制成了如圖1所示的頻率分布直方圖.

(Ⅰ)求頻率分布直方圖中字母的值,并求該組的頻率;

(Ⅱ)通過頻率分布直方圖,估計該市居民每月的用水量的中位數(shù)的值(保留兩位小數(shù));

(Ⅲ)如圖2是該市居民張某20161~6月份的月用水費(元)與月份的散點圖,其擬合的線性回歸方程是若張某20161~7月份水費總支出為312元,試估計張某7月份的用水噸數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱柱中,已知四邊形為矩形,,,的角平分線.

1)求證:平面平面;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知是半徑為2的半球的直徑, 為球面上的兩點且,

(1)求證:平面平面;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)(其中e為自然對數(shù)的底).

1)若上單調(diào)遞增,求實數(shù)a的取值范圍;

2)若,證明:存在唯一的極小值點,且.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2019101日我國隆重紀念了建國70周年,期間進行了一系列大型慶;顒,極大地激發(fā)了全國人民的愛國熱情.某校高三學生也投入到了這場愛國活動中,他()們利用周日休息時間到社區(qū)做義務(wù)宣講員,學校為了調(diào)查高三男生和女生周日的活動時間情況,隨機抽取了高三男生和女生各40人,對他()們的周日活動時間進行了統(tǒng)計,分別得到了高三男生的活動時間(單位:小時)的頻數(shù)分布表和女生的活動時間(單位:小時)的頻率分布直方圖.(活動時間均在內(nèi))

活動時間

頻數(shù)

8

10

7

9

4

2

1)根據(jù)調(diào)查,試判斷該校高三年級學生周日活動時間較長的是男生還是女生?并說明理由;

2)在被抽取的80名高三學生中,從周日活動時間在內(nèi)的學生中抽取2人,求恰巧抽到11女的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學校高三年級有、兩個自習教室,甲、乙、丙名學生各自隨機選擇其中一個教室自習,則甲、乙兩人不在同一教室上自習的概率為________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)nN*n2,集合

1)寫出集合中的所有元素;

2)設(shè)(,···,),(,···,)∈,證明“=”的充要條件是=i=1,2,3,···,n);

3)設(shè)集合={︳(,···,)∈},求中所有正數(shù)之和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】新疆在種植棉花有著得天獨厚的自然條件,土質(zhì)呈堿性,夏季溫差大,陽光充足,光合作用充分,生長時間長,這種環(huán)境下種植的棉花絨長品質(zhì)好產(chǎn)量髙,所以新疆棉花舉世聞名.每年五月份,新疆地區(qū)進入災(zāi)害天氣高發(fā)期,災(zāi)害天數(shù)對當年棉花產(chǎn)量有著重要影響,根據(jù)過去五年的數(shù)據(jù)統(tǒng)計,得到相關(guān)數(shù)據(jù)如下表:

災(zāi)害天氣天數(shù)()

2

3

4

5

8

棉花產(chǎn)量(/公頃)

3.2

2.4

2

1.9

1.7

根據(jù)以上數(shù)據(jù),技術(shù)人員分別借助甲乙兩種不同的回歸模型,得到兩個回歸方程,

方程甲:,方程乙:.

1)為了評價兩種模型的擬合效果,完成以下任務(wù): 完成下表;(計算結(jié)果精確到0.1)

②分別計算模型甲與模型乙的殘差平方和,并比鉸的大小,判斷哪個模型擬合效果更好?

災(zāi)害天氣天數(shù)()

2

3

4

5

8

棉花產(chǎn)量(噸公頃)

3.2

2.4

2

1.9

1.7

模型甲

估計值

2.4

2.1

1.6

殘差

0

0.1

模型乙

估計值

2.3

2

1.9

殘差

0.1

0

0

2)根據(jù)天氣預(yù)報,今年五月份新疆市災(zāi)害天氣是6天的概率是0.5,災(zāi)害天氣是7天的概率為0.4,災(zāi)害天氣是10天的概率為0.1,若何女士在新疆市承包了15公頃地種植棉花,請你根據(jù)第(1)問中擬合效果較好的模型估計一下何女士今年棉花的產(chǎn)量.(計算過程中所有結(jié)果精確到0.01)

查看答案和解析>>

同步練習冊答案