17.已知集合A={x|1<x<4},B={x|x≤2},則A∩(∁RB)等于( 。
A.(1,2]B.[2,4)C.(2,4)D.(1,4)

分析 由全集R及B,求出B的補(bǔ)集,找出A與B補(bǔ)集的交集即可.

解答 解:∵A=(1,4),B=(-∞,2],
∴∁RB=(2,+∞),
則A∩(∁RB)=(2,4),
故選:C.

點評 此題考查了交、并、補(bǔ)集的混合運算,熟練掌握各自的定義是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x),g(x)滿足關(guān)系g(x)=f(x)•f(x+a),其中a是常數(shù).
(1)若f(x)=cosx+sinx,且a=$\frac{π}{2}$,求g(x)的解析式,并寫出g(x)的遞增區(qū)間;
(2)設(shè)f(x)=2x+$\frac{1}{{2}^{x}}$,若g(x)的最小值為6,求常數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.一個幾何體的三視圖如圖所示,則這個幾何體的體積為( 。
A.$\frac{(9+2π)\sqrt{3}}{6}$B.$\frac{(8+2π)\sqrt{3}}{6}$C.$\frac{(6+π)\sqrt{3}}{6}$D.$\frac{(8+π)\sqrt{3}}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.“m>0”是“函數(shù)f(x)=m+log2x(x≥1)不存在零點”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分又不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.把A、B、C、D四件玩具分給三個小朋友,每位小朋友至少分到一件玩具,且A、B兩件玩具不能分給同一個人,則不同的分法有(  )
A.36種B.30種C.24種D.18種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,已知四邊形ABCD內(nèi)接于半徑為3的圓,且AB是圓的直徑,過點D的圓的切線與BA的延長線交于點M,∠BMD的平分線分別交AD、BD于點E、F,AC、BD交于點P.
(Ⅰ)證明:DE=DF;
(Ⅱ)若DM=3$\sqrt{3}$,AP=2CP=2$\sqrt{3}$,求BP的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知函數(shù)f(x)=log2x.在區(qū)間[$\frac{1}{2}$,2]上隨機(jī)取一x0,則使得f(x0)≥0的概率為$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.下列結(jié)論中正確的是③
①若a>b,則$\frac{1}{a}$<$\frac{1}$
②若a>b,則ac2>bc2
③若a>b,則a3>b3
④若a>b>c,則a(a-c)>b(b-c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如(圖1),直角梯形ABCD中,AB∥CD,∠BAD=90°,AB=AD=2,CD=4,點E為線段AB的中點,且EF∥AD,沿EF將面EBCF折起,使平面EBCF⊥平面AEFD,如(圖2).
(Ⅰ)求證:DF⊥BC;
(Ⅱ)求平面ABC與平面AEFD所成的銳二面角的余弦值;
(Ⅲ)在棱AC上是否存在一點M,使直線FM與平面ABC所成角的正弦值為$\frac{{\sqrt{42}}}{7}$,若存在求出點M的一個坐標(biāo),否則說明理由.

查看答案和解析>>

同步練習(xí)冊答案