【題目】已知橢圓的左,右焦點(diǎn)分別為,,點(diǎn)在橢圓上.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)是否存在斜率為的直線與橢圓相交于,兩點(diǎn),使得?若存在,求出直線的方程;若不存在,說(shuō)明理由.
【答案】(1);(2)不存在,理由見(jiàn)解析
【解析】
(1)根據(jù)橢圓定義求出,即可求出橢圓的標(biāo)準(zhǔn)方程;
(2)假設(shè)滿足條件的直線存在,與橢圓方程聯(lián)立,求出直線滿足的條件,根據(jù)已知條件在線段的垂直平分線上,結(jié)合直線的斜率公式,推導(dǎo)出直線不存在.
(1)因?yàn)闄E圓的左右焦點(diǎn)分別為,,
所以.由橢圓定義可得,
解得,所以
所以橢圓的標(biāo)準(zhǔn)方程為
(2)假設(shè)存在滿足條件的直線,設(shè)直線的方程為,
由得,即
,
,
解得
設(shè),,則,,
由于,設(shè)線段的中點(diǎn)為,則,
所以又,
所以,解得.
當(dāng)時(shí),不滿足.
所以不存在滿足條件的直線.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某貧困村共有農(nóng)戶100戶,均從事水果種植,平均每戶年收入為1.8萬(wàn)元,在當(dāng)?shù)卣罅Ψ龀趾鸵龑?dǎo)下,村委會(huì)決定2020年初抽出戶(,)從事水果銷售工作,經(jīng)測(cè)算,剩下從事水果種植的農(nóng)戶平均每戶年收入比上一年提高了,而從事水果銷售的農(nóng)戶平均每戶年收入為萬(wàn)元.
(1)為了使從事水果種植的農(nóng)戶三年后平均每戶年收入不低于2.4萬(wàn)元,那么2020年初至少應(yīng)抽出多少農(nóng)戶從事水果銷售工作?
(2)若一年后,該村平均每戶的年收入為(萬(wàn)元),問(wèn)的最大值是否可以達(dá)到2.1萬(wàn)元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列各項(xiàng)均為正數(shù),為其前項(xiàng)的和,且成等差數(shù)列.
(1)寫出、、的值,并猜想數(shù)列的通項(xiàng)公式;
(2)證明(1)中的猜想;
(3)設(shè),為數(shù)列的前項(xiàng)和.若對(duì)于任意,都有,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,側(cè)棱底面,,,,,點(diǎn)在棱上,且.
(1)證明:平面;
(2)求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)有二元關(guān)系,已知曲線.
(1)若時(shí),正方形的四個(gè)頂點(diǎn)均在曲線上,求正方形的面積;
(2)設(shè)曲線與軸的交點(diǎn)是,拋物線與軸的交點(diǎn)是,直線與曲線交于,直線與曲線交于,求證直線過(guò)定點(diǎn),并求該定點(diǎn)的坐標(biāo);
(3)設(shè)曲線與軸的交點(diǎn)是,,可知?jiǎng)狱c(diǎn)在某確定的曲線上運(yùn)動(dòng),曲線上與上述曲線在時(shí)共有4個(gè)交點(diǎn),其坐標(biāo)分別是、、、,集合的所有非空子集設(shè)為,將中的所有元素相加(若只有一個(gè)元素,則和是其自身)得到255個(gè)數(shù),求所有正整數(shù)的值,使得是一個(gè)與變數(shù)及變數(shù)均無(wú)關(guān)的常數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,函數(shù).
(1)若,證明:當(dāng)時(shí),;
(2)若是的極小值點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,圓形紙片的圓心為,半徑為,該紙片上的正方形的中心為,、、、為圓上點(diǎn),,,,分別是以,,,為底邊的等腰三角形,沿虛線剪開(kāi)后,分別以,,,為折痕折起,,,,使得、、、重合,得到四棱錐.當(dāng)該四棱錐體積取得最大值時(shí),正方形的邊長(zhǎng)為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱柱中,每個(gè)側(cè)面均為正方形,D為底邊AB的中點(diǎn),E為側(cè)棱的中點(diǎn).
(1)求證:平面;
(2)求證:平面;
(3)若,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(5分)《九章算術(shù)》“竹九節(jié)”問(wèn)題:現(xiàn)有一根9節(jié)的竹子,自上而下各節(jié)的容積成等差數(shù)列,上面4節(jié)的容積共3升,下面3節(jié)的容積共4升,則第五節(jié)的容積為( )
A. 1升 B. 升 C. 升 D. 升
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com