1.設(shè)點(diǎn)P,Q分別是曲線y=xe-x(e是自然對(duì)數(shù)的底數(shù))和直線y=x+3上的動(dòng)點(diǎn),則P,Q兩點(diǎn)間距離的最小值為(  )
A.$\frac{(4e-1)\sqrt{2}}{2}$B.$\frac{(4e+1)\sqrt{2}}{2}$C.$\frac{3\sqrt{2}}{2}$D.$\frac{\sqrt{2}}{2}$

分析 對(duì)曲線y=xe-x進(jìn)行求導(dǎo),求出點(diǎn)P的坐標(biāo),分析知道,過點(diǎn)P直線與直線y=x+2平行且與曲線相切于點(diǎn)P,從而求出P點(diǎn)坐標(biāo),根據(jù)點(diǎn)到直線的距離進(jìn)行求解即可.

解答 解:∵點(diǎn)P是曲線y=xe-x上的任意一點(diǎn),和直線y=x+3上的動(dòng)點(diǎn)Q,
求P,Q兩點(diǎn)間的距離的最小值,就是求出曲線y=xe-x上與直線y=x+3平行的切線與直線y=x+3之間的距離.
由y′=(1-x)e-x ,令y′=(1-x)e-x =1,解得x=0,
當(dāng)x=0,y=0時(shí),點(diǎn)P(0,0),
P,Q兩點(diǎn)間的距離的最小值,即為點(diǎn)P(0,0)到直線y=x+3的距離,
∴dmin=$\frac{3}{\sqrt{2}}$=$\frac{3\sqrt{2}}{2}$.
故選C.

點(diǎn)評(píng) 此題主要考查導(dǎo)數(shù)研究曲線上某點(diǎn)的切線方程以及點(diǎn)到直線的距離公式,利用了導(dǎo)數(shù)與斜率的關(guān)系,這是高考?嫉闹R(shí)點(diǎn),是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.復(fù)數(shù)z滿足$\frac{z}{1-z}$=2i,則z平面內(nèi)對(duì)應(yīng)的點(diǎn)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知圓O:x2+y2=1和定點(diǎn)A(2,1),由圓O外一點(diǎn)P(a,b)向圓O引切線PQ,切點(diǎn)為Q,且滿足|PQ|=|PA|.
(1)求實(shí)數(shù)a、b間滿足的等量關(guān)系;
(2)求線段PQ長的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,在直四棱柱ABCD-A1B1C1D1中,底面ABCD為等腰梯形,AB∥CD,AB=4,BC=CD=2,AA1=2,E、E1分別是棱AD、AA1的中點(diǎn),F(xiàn)是AB的中點(diǎn).
(1)證明:直線EE1∥平面FCC1
(2)求異面直線EE1和C1F所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=$\frac{1}{x}$+x,x∈[3,5].
(1)判斷函數(shù)f(x)的單調(diào)性,并利用單調(diào)性定義證明;
(2)求函數(shù)f(x)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)正項(xiàng)等比數(shù)列{an}的前n項(xiàng)和為Sn,且$\frac{{{a_{n+1}}}}{a_n}$<1,若a3+a5=20,a3a5=64,則S4=( 。
A.63或126B.252C.120D.63

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.下列函數(shù)在其定義域中,既是奇函數(shù)又是增函數(shù)的(  )
A.y=x+1B.y=-x2C.y=x|x|D.$y=\frac{1}{x}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知冪函數(shù)y=f(x)的圖象過點(diǎn)(2,$\frac{\sqrt{2}}{2}$),若f(m)=2,則m=$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.若g(x+1)=2x-2,則g(0)=-4.

查看答案和解析>>

同步練習(xí)冊(cè)答案