9.若g(x+1)=2x-2,則g(0)=-4.

分析 利用函數(shù)性質(zhì)直接求解.

解答 解:∵g(x+1)=2x-2,
∴g(0)=g(-1+1)=2×(-1)-2=-4.
故答案為:-4.

點(diǎn)評(píng) 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意函數(shù)性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)點(diǎn)P,Q分別是曲線y=xe-x(e是自然對(duì)數(shù)的底數(shù))和直線y=x+3上的動(dòng)點(diǎn),則P,Q兩點(diǎn)間距離的最小值為( 。
A.$\frac{(4e-1)\sqrt{2}}{2}$B.$\frac{(4e+1)\sqrt{2}}{2}$C.$\frac{3\sqrt{2}}{2}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知O為坐標(biāo)原點(diǎn),設(shè)動(dòng)點(diǎn)M(2,t)(t>0).
(1)若過點(diǎn)P(0,4$\sqrt{3}$)的直線l與圓C:x2+y2-8x=0相切,求直線l的方程;
(2)求以O(shè)M為直徑且被直線3x-4y-5=0截得的弦長為2的圓的方程;
(3)設(shè)A(1,0),過點(diǎn)A作OM的垂線與以O(shè)M為直徑的圓交于點(diǎn)N,求證:線段ON的長為定值,并求出這個(gè)定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.如圖程序,如果輸入n是429,則該程序輸出的是942.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若復(fù)數(shù)$\frac{a+i}{1-i}$是純虛數(shù),其中i為虛數(shù)單位,則實(shí)數(shù)a的值為( 。
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=2sin(2x+ϕ)+1的圖象過點(diǎn)(0,0),且$-\frac{π}{2}<ϕ<0$.
(Ⅰ)求ϕ的值;
(Ⅱ)求函數(shù)f(x)的最大值,并求此時(shí)x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,若tanA=3,cosC=$\frac{\sqrt{5}}{5}$,c=4.
(1)求角B;
(2)求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.下列說法中,正確的是( 。
A.第二象限的角是鈍角B.第三象限的角必大于第二象限的角
C.方程$sinx-cosx=\frac{1}{2}$無解D.方程sinx+cosx=2無解

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若復(fù)數(shù)z滿足$\frac{{|{1+i}|}}{z}$=1-i,則復(fù)數(shù)z的共軛復(fù)數(shù)$\bar z$的虛部為( 。
A.$-\frac{{\sqrt{2}}}{2}i$B.$-\frac{{\sqrt{2}}}{2}$C.$\frac{{\sqrt{2}}}{2}i$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案