分析 (1)根據(jù)函數(shù)f(x)=$\left\{\begin{array}{l}{-3x-1,x<-1}\\{x+3,-1≤x≤1}\\{3x+1,x>1}\end{array}\right.$,分類討論求得不等式f(x)>5的解集.
(2)由(1)可得函數(shù)f(x)的最小值為f(-1)=2,結(jié)合題意求得a的取值范圍.
解答 解:(1)函數(shù)f(x)=|x-1|+|2x+2|=$\left\{\begin{array}{l}{-3x-1,x<-1}\\{x+3,-1≤x≤1}\\{3x+1,x>1}\end{array}\right.$,
當(dāng)x<-1時(shí),由-3x-1>5,求得x<-2.
顯然,當(dāng)-1≤x≤1時(shí),不等式f(x)>5無解,
當(dāng)x>1時(shí),由3x+1>5,求得x>$\frac{4}{3}$.
綜上可得,不等式的解集為{x|x<-2或x>$\frac{4}{3}$ }.
(2)由(1)可得f(x)=$\left\{\begin{array}{l}{-3x-1,x<-1}\\{x+3,-1≤x≤1}\\{3x+1,x>1}\end{array}\right.$,函數(shù)f(x)的最小值為f(-1)=2,
故當(dāng)a≤2時(shí),不等式f(x)<a(a∈R)的解集為空集.
點(diǎn)評 本題主要考查隊(duì)友絕對值的函數(shù),絕對值不等式的解法,體現(xiàn)了分類討論、轉(zhuǎn)化的數(shù)學(xué)思想,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [$\frac{1}{2}$,$\frac{5}{4}$] | B. | [$\frac{1}{2}$,$\frac{3}{4}$] | C. | (0,$\frac{1}{2}$] | D. | (0,2] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 必要不充分條件 | B. | 充分不必要條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{3}}{4}$-$\frac{1}{4}$i | B. | $\frac{\sqrt{3}}{4}$+$\frac{1}{4}$i | C. | $\frac{\sqrt{3}}{2}$+$\frac{1}{2}$i | D. | $\frac{\sqrt{3}}{2}$-$\frac{1}{2}$i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com