分析 (Ⅰ)由已知可得:2a=2$\sqrt{2}$,b=1,c=$\sqrt{{a}^{2}-^{2}}$,解出即可得出橢圓C1的方程.利用$\frac{p}{2}$=c,解得p,即可得出拋物線C2的方程.
(Ⅱ)設直線l的方程為:x=my+1,A$(\frac{{y}_{1}^{2}}{4},{y}_{1})$,B$(\frac{{y}_{2}^{2}}{4},{y}_{2})$,C(x3,y3),D(x4,y4).直線方程與拋物線方程聯(lián)立可得:y2-my-4=0,利用斜率計算公式可得kOA,進而定點直線OA的方程,與橢圓方程聯(lián)立可得$(\frac{{y}_{1}^{2}}{16}+2){y}^{2}$=2,進而得到${y}_{3}^{2}$,${y}_{4}^{2}$,利用向量數(shù)量積運算性質(zhì)可得:$\overrightarrow{OA}•\overrightarrow{OB}$,$\overrightarrow{OC}•\overrightarrow{OD}$,利用$\overrightarrow{OA}$•$\overrightarrow{OB}$=2$\sqrt{6}$$\overrightarrow{OC}$•$\overrightarrow{OD}$,及其根與系數(shù)的關(guān)系解出m,即可得出.
解答 解:(Ⅰ)由已知可得:2a=2$\sqrt{2}$,b=1,c=$\sqrt{{a}^{2}-^{2}}$,
解得a=$\sqrt{2}$,b=c=1.
∴橢圓C1的方程為:$\frac{{x}^{2}}{2}+{y}^{2}$=1.
又F(1,0),∴$\frac{p}{2}$=1,解得p=2.
∴拋物線C2的方程為y2=4x.
(Ⅱ)設直線l的方程為:x=my+1,A$(\frac{{y}_{1}^{2}}{4},{y}_{1})$,B$(\frac{{y}_{2}^{2}}{4},{y}_{2})$,C(x3,y3),D(x4,y4).
聯(lián)立$\left\{\begin{array}{l}{x=my+1}\\{{y}^{2}=4x}\end{array}\right.$,化為:y2-my-4=0,∴y1+y2=4m,y1•y2=-4.
△=16m2+16>0,
∴kOA=$\frac{{y}_{1}}{\frac{{y}_{1}^{2}}{4}}$=$\frac{4}{{y}_{1}}$,∴直線OA的方程為:x=$\frac{{y}_{1}}{4}$y,
∴$\left\{\begin{array}{l}{4x={y}_{1}y}\\{{x}^{2}+2{y}^{2}=2}\end{array}\right.$,得$(\frac{{y}_{1}^{2}}{16}+2){y}^{2}$=2,${y}_{3}^{2}$=$\frac{32}{{y}_{1}^{2}+32}$,同理${y}_{4}^{2}$=$\frac{32}{{y}_{2}^{2}+32}$,
∴$\overrightarrow{OA}•\overrightarrow{OB}$=$\frac{{y}_{1}^{2}}{4}$×$\frac{{y}_{2}^{2}}{4}$+y1y2=-3,
$\overrightarrow{OC}•\overrightarrow{OD}$=x3x4+y3y4=$\frac{{y}_{1}}{4}{y}_{3}•\frac{{y}_{2}}{4}{y}_{4}$+y3y4=$\frac{3}{4}$y3y4,
∵$\overrightarrow{OA}$•$\overrightarrow{OB}$=2$\sqrt{6}$$\overrightarrow{OC}$•$\overrightarrow{OD}$,∴y3y4=-$\frac{\sqrt{6}}{3}$,
∴${y}_{3}^{2}{y}_{4}^{2}$=$\frac{32}{{y}_{1}^{2}+32}$•$\frac{32}{{y}_{2}^{2}+32}$=$\frac{3{2}^{2}}{({y}_{1}{y}_{2})^{2}+32({y}_{1}^{2}+{y}_{2}^{2})+3{2}^{2}}$=$\frac{64}{32{m}^{2}+81}$=$(-\frac{\sqrt{6}}{3})^{2}$,
∴m2=$\frac{15}{32}$,∴m=$±\frac{\sqrt{30}}{8}$,∴直線l的方程為:x=±$\frac{\sqrt{30}}{8}$y+1.
點評 本題考查了拋物線與橢圓的標準方程及其性質(zhì)、直線與拋物線橢圓相交問題、一元二次方程的根與系數(shù)的關(guān)系、向量數(shù)量積運算性質(zhì),考查了推理能力與計算能力,屬于難題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | ①②中的X | B. | ①③中的X | C. | ②③中的X | D. | ①②③中的X |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 30° | B. | 45° | C. | 60° | D. | 75° |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {x|-3<x<-1} | B. | {x|-3<x<0} | C. | {x|-1≤x<0} | D. | {x|x<-3} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | p∧?q | B. | p∧q | C. | ?p∧?q | D. | ?p∧q |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {2019,2017} | B. | {-2015} | C. | {0,2017,-2018} | D. | {2017,2019,-2015} |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com