16.橢圓$\frac{x^2}{4}$+$\frac{y^2}{3}$=1的長軸為A1A2,短軸為B1B2,將坐標平面沿y軸折成一個二面角,使A1點在平面B1A2B2上的射影恰好是該橢圓的右焦點,則此二面角的大小為( 。
A.30°B.45°C.60°D.75°

分析 由已知中橢圓$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$的長軸為A1A2,短軸為B1B2,將坐標平面沿y軸折成一個二面角,使點A1在平面B1A2B2上的射影恰是該橢圓的一個焦點,可以畫出滿足條件的圖象,利用圖象的直觀性,分析出∠FOA1即為所求二面角的平面角,解三角形FOA1即可求出二面角的大。

解答 解:由題意畫出滿足條件的圖象如下圖所示:

由圖可得∠FOA1即為所求二面角的平面角,
∵橢圓的標準方程為$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$,
則OA1=2,OF=$\sqrt{4-3}=1$,
由題意可知,△A1FO是以∠A1FO為直角的直角三角形,
∴cos∠FOA1=$\frac{OF}{O{A}_{1}}=\frac{1}{2}$,
∴∠FOA1=60°.
故選:C.

點評 本題考查的知識點是二面角的平面角及求法,其中根據(jù)已知條件畫出滿足條件的圖象,結(jié)合圖象分析出滿足條件的二面角的平面角是解答本題的關(guān)鍵,是中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

6.若函數(shù)f(x)=ax3-bx+4,當x=2時,函數(shù)f(x)有極值$-\frac{4}{3}$.
(1)求曲線y=f(x)在點(1,f(1))處的切線方程;
(2)若方程f(x)=k有3個不同的根,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.若函數(shù)f(x)=ax3-bx+4.當x=2時,函數(shù)f(x)取得極值$-\frac{4}{3}$.
(1)求函數(shù)的解析式;
(2)求函數(shù)f(x)在區(qū)間[-3,3]上的最值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.函數(shù)f(x)$\left\{\begin{array}{l}{lo{g}_{4}x+x-3(x>0)}\\{x-(\frac{1}{4})^{x}+3(x≤0)}\end{array}\right.$若f(x)的兩個零點分別為x1,x2,則|x1-x2|=3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知曲線f(x)=x3-3x及曲線y=f(x)上一點P(1,-2).
(I) 求曲線y=f(x)在P點處的切線方程;
(Ⅱ)求曲線y=f(x)過P點的切線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率e=$\frac{\sqrt{2}}{2}$,且橢圓上一點M與橢圓左右兩個焦點構(gòu)成的三角形周長為4+2$\sqrt{2}$.
(1)求橢圓C的方程;
(2)如圖,設點D為橢圓上任意一點,直線y=m和橢圓C交于A、B兩點,且直線DA、DB與y軸分別交于P、Q兩點,試探究∠PF1F2和∠QF1F2之間的等量關(guān)系并加以證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知p:$\frac{1}{x-2}$<1,q:|x-a|<1,若¬p是¬q的充分不必要條件,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.平面直角坐標系xOy中,橢圓C1:$\frac{{x}^{2}}{{a}^{2}}$+y2=1(a>1)的長軸長為2$\sqrt{2}$,拋物線C2:y2=2px(p>0)的焦點F是橢圓C1的右焦點.
(Ⅰ)求橢圓C1與拋物線C2的方程;
(Ⅱ)過點F作直線l交拋物線C2于A,B兩點,射線OA,OB與橢圓C1的交點分別為C,D,若$\overrightarrow{OA}$•$\overrightarrow{OB}$=2$\sqrt{6}$$\overrightarrow{OC}$•$\overrightarrow{OD}$,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.已知x、y的取值如表所示:
x0134
y0.91.93.24.4
從散點圖分析,y與x線性相關(guān),且$\widehat{y}$=0.8x+a,則a=1.

查看答案和解析>>

同步練習冊答案