8.已知函數(shù)f(x)=lnx-a,若f(x)<x2在(1,+∞)上恒成立,則實(shí)數(shù)a的取值范圍是( 。
A.[-1,+∞)B.(1,+∞)C.[1,+∞)D.(-1,+∞)

分析 利用參數(shù)分類法,轉(zhuǎn)化求函數(shù)的最值問題,構(gòu)造函數(shù)求函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)法進(jìn)行求解即可.

解答 解:若f(x)<x2在(1,+∞)上恒成立,
則等價(jià)為lnx-a<x2在(1,+∞)上恒成立,
即lnx-x2<a在(1,+∞)上恒成立,
設(shè)h(x)=lnx-x2,
則h′(x)=$\frac{1}{x}$-2x=$\frac{1-2{x}^{2}}{x}$,
當(dāng)x≥1時(shí),h′(x)<0,即h(x)在[1,+∞)上為減函數(shù),
則當(dāng)x>1時(shí),h(x)<h(1)=1-2=-1,
則a≥-1,
故選:A.

點(diǎn)評(píng) 本題主要考查不等式恒成立問題,利用參數(shù)分離法以及構(gòu)造法是解決本題的關(guān)鍵.綜合性較強(qiáng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知命題P:?x∈R,ax2+2x+3≤0,則a>$\frac{1}{3}$是命題¬p為真命題的( 。
A.充分而不必要條件B.必要而不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.正六邊形的中心和頂點(diǎn)共7個(gè)點(diǎn),以其中3個(gè)點(diǎn)為頂點(diǎn)的三角形的個(gè)數(shù)為( 。
A.38B.35C.32D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.如圖,在△ABC中,$\overrightarrow{AD}$=$\frac{2}{3}$$\overrightarrow{AC}$,$\overrightarrow{BP}$=$\frac{1}{3}$$\overrightarrow{BD}$,若$\overrightarrow{AP}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{AC}$,則下列關(guān)于λ,μ的值說法正確的是(  )
A.λ=$\frac{2}{3}$B.λ=$\frac{1}{3}$C.μ=$\frac{4}{9}$D.μ=$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知△ABC的三個(gè)內(nèi)角A,B,C的對(duì)邊依次為a,b,c,滿足$\frac{tanB}{tanC}$=$\frac{2a-b}$.
(1)求角C的大;
(2)若c=2,求△ABC周長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.求過點(diǎn)P(2,-4),且在坐標(biāo)軸上的截距之和為5的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知拋物線C1:x2=2py(p>0)的準(zhǔn)線與拋物線C2:x2=-2py(p>0)交于A,B兩點(diǎn),C1的焦點(diǎn)為F,若△FAB的面積等于1,則C1的方程是(  )
A.x2=2yB.x2=$\sqrt{2}$yC.x2=yD.x2=$\frac{\sqrt{2}}{2}y$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知四點(diǎn)A(2,3,1),B(-5,4,1),C(6,2,-3),D(5,-2,1),求通過點(diǎn)A且垂直于B,C,D所確定的平面的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.有下列說法:
①作正弦函數(shù)的圖象時(shí),單位圓的半徑長與y軸的單位長度要一致;
②y=sinx,x∈[0,2π)的圖象關(guān)于點(diǎn)P(π,0)對(duì)稱;
③y=sinx,x∈[$\frac{π}{2}$,$\frac{5π}{2}$]的圖象關(guān)于直線x=$\frac{3π}{2}$成軸對(duì)稱圖形;
④正弦函數(shù)y=sinx的圖象不超出直線y=-1和y=1所夾的區(qū)域.
其中,正確說法的個(gè)數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案