10.我國古代名著《莊子•天下篇》中有一句名言“一尺之棰,日取其半,萬世不竭”,其意思為:一尺的木棍,每天截取一半,永遠(yuǎn)都截不完.現(xiàn)將該木棍依此規(guī)律截取,如圖所示的程序框圖的功能就是計(jì)算截取7天后所剩木棍的長度(單位:尺),則①②③處可分別填入的是( 。
  ① ② ③
 A i≤7? s=s-$\frac{1}{i}$ i=i+1
 B i≤128? s=s-$\frac{1}{i}$ i=2i
 Ci≤7? s=s-$\frac{1}{2i}$ i=i+1
 D i≤128? s=s-$\frac{1}{2i}$ i=2i
A.AB.BC.CD.D

分析 分析程序中各變量、各語句的作用,再根據(jù)流程圖所示的順序,可知該程序的作用是累加并輸出S的值,由此得出結(jié)論.

解答 解:程序運(yùn)行過程中,各變量值如下表所示:
第1次循環(huán):S=1,i=2,
第2次循環(huán):S=1-$\frac{1}{2}$,i=4,
第3次循環(huán):S=1-$\frac{1}{2}$-$\frac{1}{4}$-,i=16,…
依此類推,第6次循環(huán):S=1-$\frac{1}{2}-\frac{1}{4}-\frac{1}{8}$…$-\frac{1}{64}$,i=64,
第7次循環(huán),S=1-$\frac{1}{2}-\frac{1}{4}-…-\frac{1}{128}$,i=128,此時(shí)不滿足條件,退出循環(huán),
其中判斷框內(nèi)應(yīng)填入的條件是:①i≤128?,②S=S-$\frac{1}{i}$,③i=2i;
故選:B.

點(diǎn)評 本題考查了程序框圖的應(yīng)用問題,其中程序填空是重要的考試題型,準(zhǔn)確理解流程圖的含義是解題的關(guān)鍵

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.如右圖是正態(tài)分布$N(μ,{σ_1}^2),N(μ,{σ_2}^2),N(μ,{σ_3}^2)({σ_1},{σ_2},{σ_3}>0)$相應(yīng)的曲線,那么σ1,σ2,σ3的大小關(guān)系是( 。
A.σ1>σ2>σ3B.σ3>σ2>σ1C.σ1>σ3>σ2D.σ2>σ1>σ3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.sin43°cos17°+cos43°sin17°的值為( 。
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{3}}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.如圖是某幾何體的三視圖,則此幾何體可由下列哪兩種幾何體組合而成( 。
A.兩個(gè)長方體B.兩個(gè)圓柱
C.一個(gè)長方體和一個(gè)圓柱D.一個(gè)球和一個(gè)長方體

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知數(shù)列{an}的通項(xiàng)公式an=$\frac{n-\sqrt{82}}{n-\sqrt{89}}$,那么數(shù)列{an}的第10項(xiàng)最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.某幾何體的三視圖如圖所示(單位:cm),則該幾何體的體積(單位:cm3)是( 。
A.$\frac{π}{2}+1$B.$\frac{π}{2}+3$C.$\frac{3π}{2}+1$D.$\frac{3π}{2}+3$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.求實(shí)數(shù)λ的取值范圍,使不等式|$\frac{1-abλ}{aλ-b}$|>1對滿足|a|<1,|b|<1的一切實(shí)數(shù)a,b恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知 f (x)=sin(x+$\frac{π}{2}$),g(x)=sin(π-x),則下列結(jié)論中正確的是(  )
A.函數(shù) y=f (x)•g ( x) 的周期為 2
B.函數(shù) y=f (x)•g ( x) 的最大值為 1
C.將f (x)的圖象向左平移$\frac{π}{2}$個(gè)單位后得到 g(x)的圖象
D.y=f(x)+g(x)的一個(gè)對稱中心是($\frac{3}{4}π$,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.三棱錐P-ABC的四個(gè)頂點(diǎn)都在球O的表面上,PA⊥平面ABC,AB⊥BC,PA=2,AB=BC=1,則球O的表面積為( 。
A.$\sqrt{6}$πB.C.24πD.2$\sqrt{6}$π

查看答案和解析>>

同步練習(xí)冊答案