【題目】已知命題p:x∈(﹣∞,0),2x<3x;命題q:x∈(0,),tanx>sinx,則下列命題為真命題的是( 。
A.p∧q
B.p∨(﹁q)
C.(﹁p)∧q
D.p∧(﹁q)
【答案】C
【解析】解:因?yàn)楫?dāng)x<0時(shí),,
即2x>3x , 所以命題p為假,從而﹁p為真.
因?yàn)楫?dāng)時(shí), ,
即tanx>sinx,所以命題q為真.
所以(﹁p)∧q為真,
故選C.
【考點(diǎn)精析】本題主要考查了復(fù)合命題的真假的相關(guān)知識(shí)點(diǎn),需要掌握“或”、 “且”、 “非”的真值判斷:“非p”形式復(fù)合命題的真假與F的真假相反;“p且q”形式復(fù)合命題當(dāng)P與q同為真時(shí)為真,其他情況時(shí)為假;“p或q”形式復(fù)合命題當(dāng)p與q同為假時(shí)為假,其他情況時(shí)為真才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】非空集合G關(guān)于運(yùn)算⊕滿足:
(1)對(duì)任意a,b∈G,都有a+b∈G;
(2)存在e∈G使得對(duì)于一切a∈G都有a⊕e=e⊕a=a,
則稱G是關(guān)于運(yùn)算⊕的融洽集,
現(xiàn)有下列集合與運(yùn)算:
①G是非負(fù)整數(shù)集,⊕:實(shí)數(shù)的加法;
②G是偶數(shù)集,⊕:實(shí)數(shù)的乘法;
③G是所有二次三項(xiàng)式構(gòu)成的集合,⊕:多項(xiàng)式的乘法;
④G={x|x=a+b ,a,b∈Q},⊕:實(shí)數(shù)的乘法;
其中屬于融洽集的是(請(qǐng)?zhí)顚懢幪?hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)P,Q是兩個(gè)集合,定義集合P﹣Q={x|x∈P且xQ}為P,Q的“差集”,已知P={x|1﹣ <0},Q={x||x﹣2|<1},那么P﹣Q等于( )
A.{x|0<x<1}
B.{x|0<x≤1}
C.{x|1≤x<2}
D.{x|2≤x<3}
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示的“8”字形曲線是由兩個(gè)關(guān)于x軸對(duì)稱的半圓和一個(gè)雙曲線的一部分組成的圖形,其中上半個(gè)圓所在圓方程是x2+y2﹣4y﹣4=0,雙曲線的左、右頂
點(diǎn)A、B是該圓與x軸的交點(diǎn),雙曲線與半圓相交于與x軸平行的直徑的兩端點(diǎn).
(1)試求雙曲線的標(biāo)準(zhǔn)方程;
(2)記雙曲線的左、右焦點(diǎn)為F1、F2 , 試在“8”字形曲線上求點(diǎn)P,使得
∠F1PF2是直角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)橢圓的中心在原點(diǎn),對(duì)稱軸為坐標(biāo)軸,且長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的2倍.又點(diǎn)P(4,1)在橢圓上,求該橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】理科競(jìng)賽小組有9名女生、12名男生,從中隨機(jī)抽取一個(gè)容量為7的樣本進(jìn)行分析.
(Ⅰ)如果按照性別比例分層抽樣,可以得到多少個(gè)不同的樣本?(寫出算式即可)
(Ⅱ)如果隨機(jī)抽取的7名同學(xué)的物理、化學(xué)成績(jī)(單位:分)對(duì)應(yīng)如表:
學(xué)生序號(hào) | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
物理成績(jī) | 65 | 70 | 75 | 81 | 85 | 87 | 93 |
化學(xué)成績(jī) | 72 | 68 | 80 | 85 | 90 | 86 | 91 |
規(guī)定85分以上(包括85份)為優(yōu)秀,從這7名同學(xué)中再抽取3名同學(xué),記這3名同學(xué)中物理和化學(xué)成績(jī)均為優(yōu)秀的人數(shù)為X,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知
(1)求的值;
(2)當(dāng)x∈(﹣t,t](其中t∈(﹣1,1),且t為常數(shù))時(shí),f(x)是否存在最小值,如果存在求出最小值;如果不存在,請(qǐng)說(shuō)明理由;
(3)當(dāng)f(x﹣2)+f(4﹣3x)≥0時(shí),求滿足不等式f(x﹣2)+f(4﹣3x)≥0的x的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(1)若,且在上單調(diào)遞增,求實(shí)數(shù)的取值范圍
(2)是否存在實(shí)數(shù),使得函數(shù)在上的最小值為?若存在,求出實(shí)數(shù)的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩船駛向一個(gè)不能同時(shí)停泊兩艘船的碼頭,它們?cè)谝惶於男r(shí)內(nèi)到達(dá)該碼頭的時(shí)刻是等可能的.如果甲船停泊時(shí)間為1小時(shí),乙船停泊時(shí)間為2小時(shí),求它們中的任意一艘都不需要等待碼頭空出的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com