15.已知函數(shù)f(x)=|x+1|-|x-3|.
(Ⅰ)畫出函數(shù)f(x)的圖象;
(Ⅱ)若不等式f(x)≥$\frac{|3m+1|-|1-m|}{|m+1|}$對任意實數(shù)m≠-1,求實數(shù)x的取值范圍.

分析 (Ⅰ)運用絕對值的含義,對x討論,分x>3,-1≤x≤3,x<-1,去掉絕對值,畫出圖象即可;
(Ⅱ)運用絕對值不等式的性質(zhì),可得不等式右邊的最大值為2,再由不等式恒成立思想可得f(x)≥2,再由去絕對值的方法,即可解得x的范圍.

解答 解:(Ⅰ)由零點分段法,
得f(x)=$\left\{\begin{array}{l}{-4,x<-1}\\{2x-2.-1≤x≤3}\\{4,x>3}\end{array}\right.$,
函數(shù)f(x)的圖象如圖所示:
(Ⅱ)$\frac{|3m+1|-|1-m|}{|m+1|}$≤$\frac{|3m+1+1-m|}{|m+1|}$=2,
當(dāng)且僅當(dāng)(3m+1)(1-m)≤0,
且|3m+1|≥|1-m|,m≠-1,
即m≥1或m<-1時,取等號,
由不等式f(x)≥$\frac{|3m+1|-|1-m|}{|m+1|}$對任意實數(shù)m≠=-1恒成立,得|x+1|-|x-3|≥2,
由(Ⅰ)中圖象,可知x≥2,
所以實數(shù)x的取值范圍是{x|x≥2}

點評 本題考查絕對值不等式的解法,同時考查不等式恒成立問題的求法,運用分類討論的思想方法和絕對值不等式的性質(zhì)是解題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知拋物線C:y2=2px(p>0),直線$l:y=\sqrt{3}({x-1})$,l與C交于A,B兩點,若$AB=\frac{16}{3}$,則p=( 。
A.8B.4C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知函數(shù)f(x)=$\left\{\begin{array}{l}{lo{g}_{2}x,x>1}\\{(\frac{1}{2})^{x},x≤1}\end{array}\right.$,則f(f(-2))=(  )
A.2B.-2C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知一幾何體的三視圖如圖所示,則該幾何體的表面積為(  )
A.14+6$\sqrt{5}$+10πB.14+6$\sqrt{5}$+20πC.12+12πD.26+6$\sqrt{5}$+10π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知正項等比數(shù)列{an}的前n項和為Sn,且a1a2a3=216,a4=24,若不等式λ≤1+Sn對一切n∈N*恒成立,則實數(shù)λ的最大值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.高考結(jié)束后高三的8名同學(xué)準(zhǔn)備拼車去旅游,其中一班、二班、三班、四班每班各兩名,分乘甲、乙兩輛汽車,每車限坐4名同學(xué)(乘同一輛車的4名同學(xué)不考慮位置,)其中一班兩位同學(xué)是孿生姐妹,需乘同一輛車,則乘坐甲車的4名同學(xué)中恰有2名同學(xué)是來自同一班的乘坐方式共有(  )
A.18種B.24種C.48種D.36種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.甲、乙兩家外賣公司,其送餐員的日工資方案如下:甲公司的底薪70元,每單抽成4元;乙公司無底薪,40單以內(nèi)(含40單)的部分每單抽成5元,超出40單的部分每單抽成7元,假設(shè)同一公司送餐員一天的送餐單數(shù)相同,現(xiàn)從兩家公司各隨機(jī)抽取一名送餐員,并分別記錄其100天的送餐單數(shù),得到如表頻數(shù)表:
甲公司送餐員送餐單數(shù)頻數(shù)表
 送餐單數(shù) 38 39 40 41 42
 天數(shù) 20 40 20 10 10
乙公司送餐員送餐單數(shù)頻數(shù)表
 送餐單數(shù) 38 39 40 41 42
 天數(shù) 10 20 20 40 10
(Ⅰ)現(xiàn)從甲公司記錄的100天中隨機(jī)抽取兩天,求這兩天送餐單數(shù)都大于40的概率;
(Ⅱ)若將頻率視為概率,回答下列問題:
(i)記乙公司送餐員日工資為X(單位:元),求X的分布列和數(shù)學(xué)期望;
(ii)小明擬到甲、乙兩家公司中的一家應(yīng)聘送餐員,如果僅從日工資的角度考慮,請利用所學(xué)的統(tǒng)計學(xué)知識為他作出選擇,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.下列說法錯誤的是( 。
A.命題,“若x2-3x+2=0,則x=1”的逆否命題為:“若x≠1,則x2-3x+2≠0“
B.對于命題p:?x0∈R,x02+x0+1<0,則¬p:?x∈R,x2+x+1≥0
C.若m,n∈R,“l(fā)nm<lnn“是“em<en”的必要不充分條件
D.若p∨q為假命題,則p,q均為假命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,設(shè)長方體ABCD-A1B1C1D1中,AB=BC=1,AA1=2,Q是AA1的中點,點P在線段B1D1上;
(1)試在線段B1D1上確定點P的位置,使得異面直線QB與DP所成角為60°,并請說明
你的理由;
(2)在滿足(1)的條件下,求四棱錐Q-DBB1P的體積.

查看答案和解析>>

同步練習(xí)冊答案