5.已知拋物線C:y2=2px(p>0),直線$l:y=\sqrt{3}({x-1})$,l與C交于A,B兩點,若$AB=\frac{16}{3}$,則p=( 。
A.8B.4C.2D.1

分析 直線$l:y=\sqrt{3}({x-1})$與拋物線y2=2px聯(lián)立,可得3x2+(-6-2p)x+3=0,利用$AB=\frac{16}{3}$,求出p,即可得出結(jié)論.

解答 解:直線$l:y=\sqrt{3}({x-1})$與拋物線y2=2px聯(lián)立,可得3x2+(-6-2p)x+3=0,
∵$AB=\frac{16}{3}$,
∴$\sqrt{1+3}$•$\sqrt{(\frac{-6-2p}{3})^{2}-4}$=$\frac{16}{3}$,
∴p=2,
故選C.

點評 本題考查拋物線方程,考查直線與拋物線的位置關(guān)系,考查學(xué)生的計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.如圖,網(wǎng)格紙上小正方形的邊長為1,粗線畫出的是某幾何體的三視圖,其中曲線部分是圓弧,則此幾何體的表面積為( 。
A.10+2πB.12+3πC.20+4πD.16+5π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.如果將函數(shù)f(x)=sin(3x+φ)(-π<φ<0)的圖象向左平移$\frac{π}{12}$個單位所得到的圖象關(guān)于原點對稱,那么φ=-$\frac{π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)$f(x)=\frac{1}{x}+klnx$,k≠0.
(Ⅰ)當(dāng)k=2時,求函數(shù)f(x)切線斜率中的最大值;
(Ⅱ)若關(guān)于x的方程f(x)=k有解,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的焦距為4$\sqrt{5}$,漸近線方程為2x±y=0,則雙曲線的方程為( 。
A.$\frac{x^2}{4}-\frac{y^2}{16}=1$B.$\frac{x^2}{16}-\frac{y^2}{4}=1$C.$\frac{x^2}{16}-\frac{y^2}{64}=1$D.$\frac{x^2}{64}-\frac{y^2}{16}=1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知x,y滿足約束條件$\left\{{\begin{array}{l}{x-y+2≥0}\\{x+2y-2≥0}\\{x≤2}\end{array}}\right.$,則目標(biāo)函數(shù)z=-x+2y的最大值為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知f(x)=lnx,g(x)=-$\frac{m}{2}{x^2}+({m+1})x,m>0$.
(1)記h(x)=f(x)-g(x),討論h(x)的單調(diào)性;
(2)若f(x)<g(x)在(0,m)上恒成立,求m的最大整數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.某程序框圖如圖所示,則該程序運行后輸出的值是( 。
A.2B.-3C.5D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=|x+1|-|x-3|.
(Ⅰ)畫出函數(shù)f(x)的圖象;
(Ⅱ)若不等式f(x)≥$\frac{|3m+1|-|1-m|}{|m+1|}$對任意實數(shù)m≠-1,求實數(shù)x的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案