13.直線l的方程為Ax+By+C=0,若l過原點和第二、四象限,則必有( 。
A.$\left\{\begin{array}{l}{C=0}\\{B>0}\end{array}\right.$B.$\left\{\begin{array}{l}{C=0}\\{B>0}\\{A>0}\end{array}\right.$C.$\left\{\begin{array}{l}{C=0}\\{AB<0}\end{array}\right.$D.$\left\{\begin{array}{l}{C=0}\\{AB>0}\end{array}\right.$

分析 直接利用已知條件求出A、B、C的關(guān)系即可.

解答 解:直線l的方程為Ax+By+C=0,若l過原點和第二、四象限,
可得C=0,直線的斜率小于0,即AB>0.
故選:D.

點評 本題考查直線位置的判定,直線的斜率以及直線的截距的關(guān)系,基本知識的考查.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.一個數(shù)列的第n項an=[a1+(n-1)d]qn-1(q≠0),即an是一個等差數(shù)列的第n項與一個等比數(shù)列的第n的乘積,這樣的數(shù)列叫做“等差×等比”數(shù)列.
(1)試判斷數(shù)列an=35-2n和bn=(-2)n是否為“等差×等比”數(shù)列,如果是“等差×等比”數(shù)列,求出a1,d,q或b1,d,q的值,如果不是“等差×等比”數(shù)列,請說明理由;
(2)若{cn}是“等差×等比”數(shù)列,且c1=2,c2=-$\frac{5}{2}$,c3=2,求cn
(3)若dn=(35-2n)(-2)n-1,求dndn+1的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.平面直角坐標(biāo)系中,O為坐標(biāo)原點,給定兩點A(1,0),B(0,-2),點C滿足$\overrightarrow{OC}$=α$\overrightarrow{OA}$+β$\overrightarrow{OB}$,其中α,β∈R,且α-2β=1.
(1)求點C的軌跡方程;
(2)設(shè)點C的軌跡與橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>0)交于兩點M,N,且以MN為直徑的圓過原點,求證:$\frac{1}{{a}^{2}}$+$\frac{1}{^{2}}$為定值;
(3)在(2)的條件下,若橢圓的離心率不大于$\frac{\sqrt{3}}{2}$,求橢圓長軸長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.關(guān)于x的不等式$\sqrt{x}$>ax+$\frac{3}{2}$的解為{x|2<x<b},求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知動圓C過定點A(0,1),且與直線y=-1相切.求:
(1)動圓的圓心C的軌跡方程;
(2)過點B(0,-2)的直線l與動圓的圓心的軌跡C交于兩個不同的點M,N,若$\overrightarrow{AM}$•$\overrightarrow{AN}$<0,求直線l的斜率的取值范圍;
(3)若直線m過(0,$\frac{1}{2}$)與曲線C相交于兩點P、Q,過P、Q分別作曲線C的切線,設(shè)兩條切線的交點為G,求△GPQ面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知集合A={y|y=x2+1},B={x|y=$\sqrt{4-x}$,(x∈Z)},P=A∩B,則P的真子集的個數(shù)為(  )
A.14個B.15個C.16個D.17個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.若實數(shù)x,y滿足$\left\{\begin{array}{l}{x+y-1≤0}\\{x≥0}\\{y≥0}\end{array}\right.$,求下列式子的取值范圍.
(1)$\frac{y+1}{x+1}$;
(2)(x-1)2+(y-1)2
(3)x-2y;
(4)|2x+y+1|;
(5)$\frac{\sqrt{3}x-y}{\sqrt{{x}^{2}+{y}^{2}}}$;
(6)$\frac{{x}^{2}+xy+{y}^{2}}{{x}^{2}-xy}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知函數(shù)f(x)=$\left\{\begin{array}{l}{|{e}^{x}-3|,(x≥0)}\\{|x+3|-1,(x<0)}\end{array}\right.$,則關(guān)于x的方程f(x)=f(x-2)解的個數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.畫出函數(shù)y=x-2sinx,x∈[-$\frac{π}{2}$,$\frac{π}{2}$]的大致圖象.

查看答案和解析>>

同步練習(xí)冊答案