16.如圖在平行四邊形ABCD中,已知AB=8,AD=5,$\overrightarrow{CP}$=3$\overrightarrow{PD}$,$\overrightarrow{AP}$•$\overrightarrow{BP}$=2,則$\overrightarrow{AB}$•$\overrightarrow{AD}$的值是( 。
A.18B.20C.22D.24

分析 由$\overrightarrow{CP}$=3$\overrightarrow{PD}$,可得$\overrightarrow{AP}$=$\overrightarrow{AD}$+$\frac{1}{4}$$\overrightarrow{AB}$,$\overrightarrow{BP}$=$\overrightarrow{AD}$-$\frac{3}{4}$$\overrightarrow{AB}$,進而由AB=8,AD=5,$\overrightarrow{CP}$=3$\overrightarrow{PD}$,$\overrightarrow{AP}$•$\overrightarrow{BP}$=2,構(gòu)造方程,進而可得答案.

解答 解:∵$\overrightarrow{CP}$=3$\overrightarrow{PD}$,
∴$\overrightarrow{AP}$=$\overrightarrow{AD}$+$\frac{1}{4}$$\overrightarrow{AB}$,$\overrightarrow{BP}$=$\overrightarrow{AD}$-$\frac{3}{4}$$\overrightarrow{AB}$,
又∵AB=8,AD=5,
∴$\overrightarrow{AP}$•$\overrightarrow{BP}$=($\overrightarrow{AD}$+$\frac{1}{4}$$\overrightarrow{AB}$)•($\overrightarrow{AD}$-$\frac{3}{4}$$\overrightarrow{AB}$)=|$\overrightarrow{AD}$|2-$\frac{1}{2}$$\overrightarrow{AB}$•$\overrightarrow{AD}$-$\frac{3}{16}$|$\overrightarrow{AB}$|2=25-$\frac{1}{2}$$\overrightarrow{AB}$•$\overrightarrow{AD}$-12=2,
故$\overrightarrow{AB}$•$\overrightarrow{AD}$=22,
故答案為:22.

點評 本題考查的知識點是向量在幾何中的應(yīng)用,平面向量數(shù)量積的運算,其中根據(jù)已知得到$\overrightarrow{AP}$=$\overrightarrow{AD}$+$\frac{1}{4}$$\overrightarrow{AB}$,$\overrightarrow{BP}$=$\overrightarrow{AD}$-$\frac{3}{4}$$\overrightarrow{AB}$,是解答的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

6.若實數(shù)a,b在區(qū)間[0,$\sqrt{2}$]上取值,則函數(shù)f(x)=$\frac{2}{3}$ax3+bx2+ax在R上有兩個相異極值點的概率是(  )
A.$\frac{\sqrt{2}}{2}$B.$\frac{\sqrt{2}}{4}$C.$\frac{\sqrt{2}}{8}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.計算下列各式的值:
(1)$\root{3}{(-4)^{3}}$-($\frac{1}{2}$)0+0.25${\;}^{\frac{1}{2}}$×($\frac{-1}{\sqrt{2}}$)-4-sin270°+tan15°
(2)log3$\sqrt{27}$+lg25+2lg2+7${\;}^{3lo{g}_{7}2}$+$\frac{lg4+lg3}{1+\frac{1}{2}lg0.36+\frac{1}{3}lg8}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知數(shù)列{an}是等比數(shù)列,首項 a1=1,公比q≠0,其前n項和為Sn,且 S1+a1,S3+a3,S2+a2成等差數(shù)列
(1)求{an}通項公式
(2)若數(shù)列{ bn}滿足$a_{n+1}={(\frac{1}{2})}^{a_nb_n}$,求數(shù)列{bn}的前n項和 Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.在△ABC中滿足條件acosB+bcosA=2ccosC,
(1)求∠C;
(2)若c=2,求三角形ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知等差數(shù)列{an},a2=1,a4=3
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若數(shù)列{bn}滿足bn=${2^{a_n}}$(n∈N+),求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.cos(-570°)的值為( 。
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.-$\frac{1}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.設(shè)函數(shù)f(x)=2x3+3ax2+3bx+8在x=1及x=2時取得極值.
(1)求a,b的值;
(2)求曲線f(x)在x=0處的切線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知拋物線y=ax2+bx+c(a>0)過(-2,0),(2,3)兩點,那么拋物線的對稱軸(  )
A.只能是x=-1
B.可能是y軸
C.可能在y軸右側(cè)且在直線x=2的左側(cè)
D.可能在y軸左側(cè)且在直線x=-2的右側(cè)

查看答案和解析>>

同步練習冊答案