6.若實(shí)數(shù)a,b在區(qū)間[0,$\sqrt{2}$]上取值,則函數(shù)f(x)=$\frac{2}{3}$ax3+bx2+ax在R上有兩個(gè)相異極值點(diǎn)的概率是( 。
A.$\frac{\sqrt{2}}{2}$B.$\frac{\sqrt{2}}{4}$C.$\frac{\sqrt{2}}{8}$D.$\frac{1}{2}$

分析 先利用導(dǎo)數(shù)求出函數(shù)f(x)=ax3+bx2+ax在R上有兩個(gè)相異極值點(diǎn)的充要條件,得出關(guān)于a,b的約束條件,在a-o-b坐標(biāo)系中畫出可行域,再利用幾何概型求出兩者的面積比即可.

解答 解:函數(shù)f(x)=$\frac{2}{3}$ax3+bx2+ax,易得f′(x)=2ax2+2bx+a,
函數(shù)f(x)=$\frac{2}{3}$ax3+bx2+ax在R上有兩個(gè)相異極值點(diǎn)的充要條件:
是a≠0且其導(dǎo)函數(shù)的判別式大于0,即a≠0且4b2-8a2>0,
又a,b在區(qū)間[0,$\sqrt{2}$]上取值,則 a>0,b>$\sqrt{2}$a,
點(diǎn)(a,b)滿足的區(qū)域如圖中陰影部分所示,
其中正方形區(qū)域的面積為3,陰影部分的面積為 $\frac{\sqrt{2}}{2}$,
故所求的概率是 $\frac{\frac{\sqrt{2}}{2}}{\sqrt{2}×\sqrt{2}}$=$\frac{\sqrt{2}}{4}$.
故選:B.

點(diǎn)評(píng) 本題主要考查了利用導(dǎo)數(shù)研究函數(shù)的極值、幾何概型.簡單地說,如果每個(gè)事件發(fā)生的概率只與構(gòu)成該事件區(qū)域的長度(面積或體積)成比例,則稱這樣的概率模型為幾何概率模型,簡稱為幾何概型.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$是同一平面內(nèi)的三個(gè)向量,其中$\overrightarrow{a}$=(1,2).
(1)若$\overrightarrow{c}$=(-2,k),且$\overrightarrow{c}$∥$\overrightarrow{a}$,求$\overrightarrow{c}$的坐標(biāo);
(2)若|$\overrightarrow$|=$\frac{\sqrt{5}}{2}$,且$\overrightarrow{a}$+2$\overrightarrow$與2$\overrightarrow{a}$-$\overrightarrow$垂直,求$\overrightarrow{a}$與$\overrightarrow$的夾角θ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)與雙曲線$\frac{{x}^{2}}{{m}^{2}}$-$\frac{{y}^{2}}{{n}^{2}}$=1(m>0,n>0)有相同焦點(diǎn),它們的公共點(diǎn)在x軸上的射影為其中一個(gè)焦點(diǎn),若它們的離心率分別為e1,e2,則e1•e2=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知集合A={x|x2-2px+p2+2p+2=0,x∈R},且A∩R+=∅,求實(shí)數(shù)p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知曲線C的參數(shù)方程是$\left\{\begin{array}{l}{x=cosα}\\{y=m+sinα}\end{array}\right.$(α為參數(shù)),直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=1+\frac{\sqrt{5}}{5}t}\\{y=4+\frac{2\sqrt{5}}{5}t}\end{array}\right.$(t為參數(shù)),
(1)求曲線C與直線l的普通方程;
(2)若直線l與曲線C相交于P,Q兩點(diǎn),且|PQ|=$\frac{4\sqrt{5}}{5}$,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)f(x)=$\frac{{x-\sqrt{3}}}{{\sqrt{3}x+1}}$,且滿足fn(x)=f(fn-1(x)),n∈N*,若f0(x)=f(x),則f2015(0)=( 。
A.0B.$\sqrt{3}$C.$-\sqrt{3}$D.2015

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.等差數(shù)列-1,4,…的前10項(xiàng)之和為215.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)i是虛數(shù)單位,則復(fù)數(shù)$\frac{(1+i)^{2}}{1-i}$=(  )
A.1+iB.1-iC.-1-iD.-1+i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.如圖在平行四邊形ABCD中,已知AB=8,AD=5,$\overrightarrow{CP}$=3$\overrightarrow{PD}$,$\overrightarrow{AP}$•$\overrightarrow{BP}$=2,則$\overrightarrow{AB}$•$\overrightarrow{AD}$的值是(  )
A.18B.20C.22D.24

查看答案和解析>>

同步練習(xí)冊(cè)答案