分析 (1)根據(jù)絕對值的幾何意義求出不等式的解集即可;(2)求出f(x)的最小值,問題轉(zhuǎn)化為關(guān)于a,b的不等式組,求出a的范圍即可.
解答 解:(1)a=3時,函數(shù)f(x)=|x-3|+|x-2|,
表示數(shù)軸上的x對應(yīng)點(diǎn)到2,3對應(yīng)點(diǎn)的距離之和,
而$\frac{1}{2}$和$\frac{9}{2}$對應(yīng)點(diǎn)到2、3對應(yīng)點(diǎn)的距離之和正好是4,
故不等式f(x)<4的解集是($\frac{1}{2}$,$\frac{9}{2}$);
(2)∵f(x)=|x-a|+|x-2|≥|a-2|=2-a,
由題意得2-a$≥\frac{{a}^{2}+^{2}+{c}^{2}}{b+c}$,
即(2-a)(1-a)≥a2+b2+c2①,
正實數(shù)b,c滿足a+b+c=1,
∴(1-a)2=(b+c)2≤2(b2+c2),
∴$\frac{{(1-a)}^{2}}{2}$≤b2+c2②,
綜合①②可得(1-a)(2-a)≥a2+$\frac{{(1-a)}^{2}}{2}$,
即a2+4a-3≤0,
再結(jié)合0<a<1,
解得:0<a≤$\sqrt{7}$-2.
點(diǎn)評 本題考查了絕對值的幾何意義,考查解不等式問題,是一道中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {0,1} | B. | {-1,0,1} | C. | {0,1,5} | D. | {-1,1} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | $-\sqrt{3}$ | C. | $\sqrt{3}$ | D. | -2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1008×1009 | B. | 1007×1008 | C. | 1005×1004 | D. | 1006×1005 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com