7.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,a≤b≤c,S為△ABC的面積,若3a2-4mS=3(b-c)2,則m的最大值為$\sqrt{3}$.

分析 由題意易得A∈(0,$\frac{π}{3}$],由三角形的面積公式和余弦定理可得m=3×$\frac{1-cosA}{sinA}$,令t=$\frac{1-cosA}{sinA}$,由斜率公式和圓的方程可得t的最大值,進(jìn)而可得答案.

解答 解:∵在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,a≤b≤c,
∴A≤B≤C,∴A∈(0,$\frac{π}{3}$],
∵3a2-4mS=3(b-c)2
∴m=$\frac{3}{4}$×$\frac{{a}^{2}-(b+c)^{2}}{S}$=$\frac{3}{4}$×$\frac{{a}^{2}-^{2}-{c}^{2}+2bc}{\frac{1}{2}bcsinA}$,
由余弦定理可得a2=b2+c2-2bccosA,∴a2-b2-c2=-2bccosA,
代入上式可得m=$\frac{3}{4}$×$\frac{-2bccosA+2bc}{\frac{1}{2}bcsinA}$=3×$\frac{1-cosA}{sinA}$,
令t=$\frac{1-cosA}{sinA}$,則-$\frac{1}{t}$=$\frac{sinA}{cosA-1}$,
表示點(diǎn)(1,0)與(cosA,sinA)連線的斜率,
∵A∈(0,$\frac{π}{3}$],∴(cosA,sinA)表示單位圓在(1,0)到($\frac{1}{2}$,$\frac{\sqrt{3}}{2}$)第一象限內(nèi)的圓弧上的點(diǎn),
∴-$\frac{1}{t}$=的最大值為$\frac{\frac{\sqrt{3}}{2}-0}{\frac{1}{2}-1}$=$-\sqrt{3}$,∴t=$\frac{1-cosA}{sinA}$的最大值為$\frac{1}{\sqrt{3}}$
∴m=3×$\frac{1-cosA}{sinA}$的最大值為$\sqrt{3}$
故答案為:$\sqrt{3}$

點(diǎn)評(píng) 本題考查解三角形,涉及余弦定理和面積公式以及斜率的幾何意義,屬中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.將正整數(shù)1,2,3,…,n,…,排成數(shù)表如表所示,即第一行3個(gè)數(shù),第二行6個(gè)數(shù),且后一行比前一行多3個(gè)數(shù),若第i行,第j列的數(shù)可用(i,j)表示,則2015可表示為(37,17).
第1列第2列第3列第4列第5列第6列第7列第8列
第1行123
第2行987654
第3行1011121314151617

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.我們知道,以正三角形的三邊中點(diǎn)為頂點(diǎn)的三角形與原三角形的面積之比為1:4,類比該命題得,以正四面體的四個(gè)面的中心為頂點(diǎn)的四面體與原四面體的體積之比為$\frac{1}{27}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.某牛奶廠要將一批牛奶用汽車(chē)從所在城市甲運(yùn)至城市乙,已知從城市甲到城市乙只有兩條公路,且運(yùn)費(fèi)由廠商承擔(dān).若廠商恰能在約定日期(×月×日)將牛奶送到,則城市乙的銷(xiāo)售商一次性支付給牛奶廠20萬(wàn)元;若在約定日期前送到,每提前一天銷(xiāo)售商將多支付給牛奶廠1萬(wàn)元;若在約定日期后送到,每遲到一天銷(xiāo)售商將少支付給牛奶廠1萬(wàn)元.為保證牛奶新鮮度,汽車(chē)只能在約定日期的前兩天出發(fā),且只能選擇其中的一條公路運(yùn)送牛奶,已知下表內(nèi)的信息:
統(tǒng)計(jì)信息在不堵車(chē)的情況下到達(dá)城市乙所需時(shí)間(天)在堵車(chē)的情況下到達(dá)城市乙所需時(shí)間(天)堵車(chē)的概率運(yùn)費(fèi)(萬(wàn)元)
公路123$\frac{1}{10}$1.6
公路214$\frac{1}{2}$0.8
(Ⅰ)記汽車(chē)選擇公路1運(yùn)送牛奶時(shí)牛奶廠獲得的毛收入為ξ(單位:萬(wàn)元),求ξ的分布列和數(shù)學(xué)期望E(ξ);
(Ⅱ)如果你是牛奶廠的決策者,你選擇哪條公路運(yùn)送牛奶有可能讓牛奶廠獲得的毛收入更多?
(注:毛收入=銷(xiāo)售商支付給牛奶廠的費(fèi)用-運(yùn)費(fèi))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知函數(shù)f(x)=asinωxcosωx+$\sqrt{3}$cos2ωx(a>0,ω>0)的最小正周期為$\frac{π}{2}$,最小值為-$\frac{\sqrt{3}}{2}$,將函數(shù)f(x)的圖象向左平移φ(φ>0)個(gè)單位后,得到的函數(shù)圖象的一條對(duì)稱軸為x=$\frac{π}{8}$,則φ的值不可能為( 。
A.$\frac{5π}{24}$B.$\frac{13π}{24}$C.$\frac{17π}{24}$D.$\frac{23π}{24}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.求函數(shù)y=sin22x+$\sqrt{3}$sinxcosx-1的最大值,最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,且Sn+1+Sn=(n+1)an+1-$\frac{1}{2}$an-1,n∈N*
(1)若數(shù)列{an}是等差數(shù)列,求數(shù)列{an}的通項(xiàng)公式
(2)設(shè)a2=6,求證:數(shù)列{an}是等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知函數(shù)f(x)=cos(ωx-$\frac{π}{6}$)(ω>0)的一條對(duì)稱軸與最近的一個(gè)零點(diǎn)的距離為$\frac{π}{4}$,要y=f(x)的圖象,只需把y=cosωx的圖象                        ( 。
A.向右平移$\frac{π}{12}$個(gè)單位B.向左平移$\frac{π}{12}$個(gè)單位
C.向右平移$\frac{π}{6}$個(gè)單位D.向左平移$\frac{π}{6}$個(gè)單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.△ABC為等腰直角三角形,AC=BC=4,∠ACB=90°,D、E分別是邊AC和AB的中點(diǎn),現(xiàn)將△ADE沿DE折起,使面ADE⊥面DEBC,H是邊AD的中點(diǎn),平面BCH與AE交于點(diǎn)I.

(Ⅰ)求證:IH∥BC;
(Ⅱ)求三棱錐A-HIC的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案