10.已知A船在燈塔C的北偏東80°處,且A船到燈塔C的距離為2km,B船在燈塔C的北偏西40°處,且B船到燈塔C的距離為1km,則A、B兩船間的距離為$\sqrt{7}$km.

分析 先確定|AC|、|BC|和∠ACB的值,然后在△ABC中應(yīng)用余弦定理可求得|AB|的值.

解答 解:由題意可知|AC|=2,|BC|=1,∠ACB=120°
在△ABC中由余弦定理可得
|AB|2=|AC|2+|BC|2-2|AC||BC|cos∠ACB=4+1-2•2•1•(-$\frac{1}{2}$)=7
∴|AB|=$\sqrt{7}$km.
故答案為:$\sqrt{7}$.

點(diǎn)評 本題主要考查余弦定理的應(yīng)用,考查根據(jù)解三角形的有關(guān)定理來解決實(shí)際問題的能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.正數(shù)x,y滿足x+2y=1,則$\frac{1}{x}$+$\frac{1}{y}$的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.下列四種說法中,
①命題“存在x∈R,x2-x>0”的否定是“對于任意x∈R,x2-x<0”;
②命題“p且q為真”是“p或q為真”的必要不充分條件;
③已知冪函數(shù)f(x)=xα的圖象經(jīng)過點(diǎn)(2,$\frac{\sqrt{2}}{2}$),則f(4)的值等于$\frac{1}{2}$;
④已知向量$\overrightarrow{a}$=(3,-4),$\overrightarrow$=(2,1),則向量 $\overrightarrow{a}$在向量$\overrightarrow$方向上的投影是$\frac{2}{5}$.
說法錯誤的個數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)x,y滿足約束條件$\left\{\begin{array}{l}{x≥0}\\{2x-y≤0}\\{x+y-6≤0}\end{array}\right.$,則z=4x-y的最大值為( 。
A.-6B.0C.4D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.函數(shù)y=$\frac{\sqrt{lo{g}_{\frac{1}{2}}(x-1)}}{|x|-2}$的定義域?yàn)椋?,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知數(shù)列{an}的第一項(xiàng)a1=5且Sn-1=an(n≥2,n∈N*).
(1)求a2,a3,a4,并由此猜想an的表達(dá)式;
(2)用數(shù)學(xué)歸納法證明{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.函數(shù)f(x)=2cos2x+cos(2x+$\frac{π}{3}$)-1在[0,π]內(nèi)的一條對稱軸方程是$x=\frac{5π}{12}$或$x=\frac{11π}{12}$,在[0,π]內(nèi)單調(diào)遞增區(qū)間是$[\frac{5π}{12},\frac{11π}{12}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.在△ABC中,a≠b,c=$\sqrt{3}$,cos2A-cos2B=$\sqrt{3}$sinAcosA-$\sqrt{3}$sinBcosB,則∠C=( 。
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{5}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知平面向量$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$滿足|$\overrightarrow{a}$|=2,|$\overrightarrow$|=1,$\overrightarrow{a}$•$\overrightarrow$=-1,$<\overrightarrow{a}-\overrightarrow{c}$,$\overrightarrow-\overrightarrow{c}$>=$\frac{π}{3}$,則|$\overrightarrow{c}$|的最大值為(  )
A.$\frac{2\sqrt{21}}{3}$B.$\frac{\sqrt{21}}{3}$C.$\sqrt{26}$D.2$\sqrt{26}$

查看答案和解析>>

同步練習(xí)冊答案