17.在某產(chǎn)品表面進行腐蝕刻度線實驗,得到腐蝕深度y與腐蝕時間x之間相應的一組觀察值如表:
x(s)5101520304050607090120
y(μm)610101316171923252946
(1)畫出表中數(shù)據(jù)的散點圖;
(2)求y對x的回歸直線方程;
(3)試預測腐蝕時間為100s時腐蝕深度是多少?(可用計算器)
參考公式:$\widehat$=$\frac{\underset{\stackrel{n}{∑}}{i=1}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-b$\overline{x}$,
線性回歸方程$\widehat{y}$=bx+$\widehat{a}$.

分析 (1)由圖表點的坐標,在坐標系中描出點的坐標,得到散點圖.
(2)做出橫標和縱標的平均數(shù),利用最小二乘法做出回歸直線方程的系數(shù),得到回歸直線方程.
(3)利用回歸方程,代入計算,可得結(jié)論.

解答 解:(1)由圖表,在坐標系中得到散點圖如圖所示

(2)$\overline{x}$=$\frac{1}{11}$(5+10+15+20+30+40+50+60+70+90+120)=$\frac{510}{11}$,$\overline{y}$=$\frac{1}{11}$×(6+10+11+13+16+17+19+23+25+29+46)=$\frac{214}{11}$,
b=$\frac{13910-11×\frac{510}{11}×\frac{214}{11}}{36750-11×(\frac{510}{11})^{2}}$=0.304336,
a=$\frac{214}{11}$-0.304336×$\frac{510}{11}$=5.36,
∴y對x的回歸直線方程是y=0.304x+5.36;
(3)試預測腐蝕時間為100s時腐蝕深度是y=0.304×100+5.36=35.76μm

點評 本題考查散點圖,考查從散點圖觀察兩個變量之間的相關(guān)關(guān)系,考查線性回歸直線方程的寫法,是一個綜合題,運算量比較大.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

7.如圖,在四棱錐A-EFCB中,△AEF為等邊三角形,平面AEF⊥平面EFCB,BC=4,EF=2,四邊形EFCB是高為$\sqrt{3}$的等腰梯形,EF∥BC,O為EF的中點.
(1)求證:AO⊥CF;
(2)求二面角F-AE-B的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.如圖,高為3的直三棱柱ABC-A1B1C1中,底面是直角三角形,AC=2,D為A1C1的中點,F(xiàn)在線段AA1上,$\overrightarrow{CF}•\overrightarrow{D{B}_{1}}$=0,且A1F=1.
(1)求證:CF⊥平面B1DF;
(2)求平面B1FC與平面ABC所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.某公司為確定下一年度投入某種產(chǎn)品的宣傳費,需了解年宣傳費x(單位:千元)對年銷售量y(單位:t)和年利潤z(單位:千元)的影響,對近8年的年宣傳費x1和年銷售量y1(i=1,2,…,8)數(shù)據(jù)作了初步處理,得到下面的散點圖及一些統(tǒng)計量的值.

$\overrightarrow x$$\overrightarrow y$$\overrightarrow w$$\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}$$\sum_{i=1}^n{{{({w_i}-\overline w)}^2}}$$\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}$$\sum_{i=1}^n{({w_i}-\overline w)({y_i}-\overline y)}$
46.656.36.8289.81.61469108.8
表中w1=$\sqrt{x}$1,$\overrightarrow w$=$\frac{1}{8}$$\sum_{i=1}^n{w_i}$
(Ⅰ)根據(jù)散點圖判斷,y=a+bx與y=c+d$\sqrt{x}$哪一個適宜作為年銷售量y關(guān)于年宣傳費x的回歸方程類型?(給出判斷即可,不必說明理由)
(Ⅱ)根據(jù)(Ⅰ)的判斷結(jié)果及表中數(shù)據(jù),建立y關(guān)于x的回歸方程;
(Ⅲ)已知這種產(chǎn)品的年利率z與x、y的關(guān)系為z=0.2y-x.根據(jù)(Ⅱ)的結(jié)果回答下列問題:
(1)年宣傳費x=49時,年銷售量及年利潤的預報值是多少?
(2)年宣傳費x為何值時,年利率的預報值最大?
附:對于一組數(shù)據(jù)(u1,v1),(u2,v2),…,(un,vn),其回歸線v=α+βu的斜率和截距的最小二乘估計分別為:$\widehatβ$=$\frac{{\sum_{i=1}^n{({u_i}-\overline u)({v_i}-\overline{v)}}}}{{\sum_{i=1}^n{{{({u_i}-\overline u)}^2}}}}$,$\widehatα$=$\overline v$-$\widehatβ\overline u$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.如圖,在四棱錐P-ABCD中,PA⊥BC,平面PACD為直角梯形,∠PAC=90°,PD∥AC,PA=AB=PD=1,AC=2,∠BAC=120°
(1)求證:PA⊥AB;
(2)求直線BD與平面PACD所成角的正弦值;
(3)求二面角D-BC-A的平面角的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.假設關(guān)于某設備使用年限x(年)和所支出的維修費用y(萬元)有如下統(tǒng)計資料:x=2,3,4,5,6分別對應y=2.2,3.8,5.5,6.5,7.0.若資料知,y對x呈線性相關(guān)關(guān)系,試求:
(1)$\overline{x}$,$\overline{y}$及回歸直線方程;
(2)估計使用年限為10年時,維修費用約是多少?
提示:回歸直線方程y=bx+a,b=$\frac{\sum_{i=1}^{5}{x}_{i}{y}_{i}-5\overline{xy}}{\sum_{i=1}^{5}{x}_{i}^{2}-5{\overline{x}}^{2}}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.設a為實常數(shù),對任意x∈[0,+∞),不等式(x+1)ln(x+1)≥ax恒成立,則a的取值范圍是( 。
A.(-∞,-1]B.[-1,+∞)C.(-∞,1]D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知函數(shù)f(x)=$\frac{1}{2}$ax2+2x,g(x)=lnx.
(1)如果函數(shù)y=f(x)在[1,+∞)上是單調(diào)函數(shù),求a的取值范圍;
(2)是否存在正實數(shù)a,使得函數(shù)F(x)=$\frac{g(x)}{x}$-f′(x)+2a+1在區(qū)間($\frac{1}{2}$,2)內(nèi)有兩個不同的零點;若存在,請求出a的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.在△ABC中,|$\overrightarrow{AB}$|=1,|$\overrightarrow{AC}$|=3,∠BAC=60°,則|$\overrightarrow{BC}$|=(  )
A.1B.$\sqrt{7}$C.3D.$\sqrt{13}$

查看答案和解析>>

同步練習冊答案