分析 求出f(x)的導(dǎo)數(shù),通過(guò)討論a的范圍,從而求出f(x)的單調(diào)區(qū)間.
解答 解:f′(x)=ax2+(a-1)x-1=(ax-1)(x+1),
a>0時(shí),令f′(x)>0,解得:x>$\frac{1}{a}$或x<-1,
令f′(x)<0,解得:-1<x<$\frac{1}{a}$,
∴f(x)在(-∞,-1)遞增,在(-1,$\frac{1}{a}$)遞減,在($\frac{1}{a}$,+∞)遞增;
a=0時(shí),f(x)=-$\frac{1}{2}$x2-x+1,對(duì)稱軸x=-1,f(x)在(-∞,-1)遞增,在(-1,+∞)遞減;
-1<a<0時(shí),$\frac{1}{a}$<-1,
令f′(x)>0,解得:$\frac{1}{a}$<x<-1,令f′(x)<0,解得:x>-1或x<$\frac{1}{a}$,
∴f(x)在(-∞,$\frac{1}{a}$)遞減,在($\frac{1}{a}$,-1)遞增,在(-1,+∞)遞減;
a=-1時(shí),f′(x)≤0,f(x)在R單調(diào)遞減;
a<-1時(shí),-1<$\frac{1}{a}$<0,
令f′(x)>0,解得:-1<x<$\frac{1}{a}$,令f′(x)<0,解得:x<-1或x>$\frac{1}{a}$,
∴f(x)在(-∞,-1)遞減,在(-1,$\frac{1}{a}$)遞增,在($\frac{1}{a}$,+∞)遞減.
點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性問(wèn)題,考查導(dǎo)數(shù)的應(yīng)用,分類討論思想,是一道中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{{x}^{2}}{2}+{y}^{2}=1$ | B. | $\frac{{x}^{2}}{4}+\frac{{y}^{2}}{2}=1$ | C. | $\frac{{y}^{2}}{2}+{x}^{2}=1$ | D. | $\frac{{y}^{2}}{4}+\frac{{x}^{2}}{2}=1$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{6}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 3 | B. | 0 | C. | -1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com