3.已知$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$是夾角為60°的兩個(gè)單位向量,則(2$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$)•(-3$\overrightarrow{{e}_{1}}$+2$\overrightarrow{{e}_{2}}$)=-$\frac{9}{2}$.

分析 由單位向量的夾角可得|$\overrightarrow{{e}_{1}}$|=$|\overrightarrow{{e}_{2}}|$=1,$\overrightarrow{{e}_{1}}•\overrightarrow{{e}_{2}}$=cos60°=$\frac{1}{2}$.將(2$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$)•(-3$\overrightarrow{{e}_{1}}$+2$\overrightarrow{{e}_{2}}$)展開計(jì)算即可.

解答 解:∵$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$是夾角為60°的兩個(gè)單位向量,
∴|$\overrightarrow{{e}_{1}}$|=$|\overrightarrow{{e}_{2}}|$=1,$\overrightarrow{{e}_{1}}•\overrightarrow{{e}_{2}}$=cos60°=$\frac{1}{2}$.
∴(2$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$)•(-3$\overrightarrow{{e}_{1}}$+2$\overrightarrow{{e}_{2}}$)=-6${\overrightarrow{{e}_{1}}}^{2}$+7$\overrightarrow{{e}_{1}}•\overrightarrow{{e}_{2}}$-2${\overrightarrow{{e}_{2}}}^{2}$=-6+$\frac{7}{2}$-2=-$\frac{9}{2}$.
故答案為:-$\frac{9}{2}$.

點(diǎn)評(píng) 本題考查了平面向量的數(shù)量積運(yùn)算,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知直線y=kx是曲線y=3x的切線,則k的值是( 。
A.$\frac{1}{3}$B.eln3C.log3eD.e

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.在等比數(shù)列{an}中,a3a7=8,a4+a6=6,則a2+a8=9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.有8名男生和3名女生,從中選出4人分別擔(dān)任語(yǔ)文、數(shù)學(xué)、英語(yǔ)、物理學(xué)科的課代表,若某女生必須擔(dān)任語(yǔ)文課代表,則不同的選法共有720種(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.在△ABC中,a,b,c分別為A,B,C所對(duì)應(yīng)的邊,若acosB+bcosA=$\frac{c}{2cosC}$.
(Ⅰ)求C;
(Ⅱ)若$\overrightarrow{m}$=($\sqrt{3}$sin2B-$\frac{3\sqrt{3}}{4}$,cosB),$\overrightarrow{n}$=(1,sinA),求$\overrightarrow{m}$$•\overrightarrow{n}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.求f(x)=$\frac{1}{3}$ax3+$\frac{1}{2}$(a-1)x2-x+1的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的一個(gè)頂點(diǎn)為M(0,-1),離心率為$\frac{\sqrt{6}}{3}$,直線l:y=kx+m(k≠0)與橢圓C交于A,B兩點(diǎn).
(Ⅰ)求橢圓C的方程;
(Ⅱ)若存在關(guān)于過(guò)點(diǎn)M的直線,使得點(diǎn)A與點(diǎn)B關(guān)于該直線對(duì)稱,求實(shí)數(shù)m的取值范圍;
(Ⅲ)在(Ⅱ)的條件下,用m表示△MAB的面積S,并判斷S是否存在最大值.若存在,求出最大值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知,如圖,等腰直角三角形ABC的直角邊AC=BC=2,沿其中位線DE將平面ADE折起,使平面ADE⊥平面BCDE,得到四棱錐A-BCDE,設(shè)CD,BE,AE,AD的中點(diǎn)分別為M,N,P,Q.

(1)求證:M,N,P,Q四點(diǎn)共面;
(2)求證:平面ABC⊥平面ACD;
(3)求四棱錐A-BCDE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.表面積為40π的球面上有四點(diǎn)S、A、B、C且△SAB是等邊三角形,球心O到平面SAB的距離為$\sqrt{2}$,若平面SAB⊥平面ABC,則三棱錐S-ABC體積的最大值為6$\sqrt{6}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案