已知直線l過點P(2,1),且在兩個坐標軸上的截距相等,求直線l的方程.
考點:直線的截距式方程
專題:直線與圓
分析:當直線經(jīng)過原點時,求得要求的方程.當直線不經(jīng)過原點時,設方程為x+y=k,把點P(2,1)代入,求得k的值,可得所求的直線方程,綜合可得結(jié)論.
解答: 解:當直線經(jīng)過原點時,斜率為
1
2
,方程為y=
1
2
x,即x-2y=0.
當直線不經(jīng)過原點時,設方程為x+y=k,把點P(2,1)代入可得2+1=k,求得k=3,故所求的直線方程為x+y=3.
綜上可得,要求的直線方程為x-2y=0,或x+y=3.
點評:本題主要考查用點斜式、截距式求直線的方程,體現(xiàn)了分類討論的數(shù)學思想,屬于基礎題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

畫出一個計算1×3×5×…×99的程序框圖,并編寫出程序.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若橢圓E1
x2
a12
+
y2
b12
=1和橢圓E2
x2
a22
+
y2
b22
滿足
a2
a1
=
b2
b1
=m(m>0),則稱這兩個橢圓相似,m稱其為相似比.
(Ⅰ)求經(jīng)過點(
2
2
,
3
2
),且與橢圓C1:x2+2y2=1相似的橢圓C2的方程;
(Ⅱ)設過原點的一條射線l分別與(Ⅰ)中的橢圓C1,C2交于A、B兩點,求|OA|•|OB|的取值范圍;
(Ⅲ)設直線l1:y=kx與(Ⅰ)中橢圓C2交于M、N兩點(其中M在第一象限),且直線l1與直線l2:x=2交于點D,過D作DG∥MF(F為橢圓C2的右焦點)且交x軸于點G,證明直線MG與橢圓C2只有一個公共點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(Ⅰ)已知函數(shù)f(x)=ex-1-tx,?x0∈R,使f(x0)≤0,求實數(shù)t的取值范圍;
(Ⅱ)證明:
b-a
b
<ln
b
a
b-a
a
,其中0<a<b;
(Ⅲ)設[x]表示不超過x的最大整數(shù),證明:[ln(1+n)]≤[1+
1
2
+…+
1
n
]≤1+[lnn](n∈N*).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

數(shù)列{an}是等差數(shù)列且a2=3,a4=5;數(shù)列{bn}的前n項和為Sn,且2Sn=3bn-3(n∈N*).
(1)求數(shù)列{an},{bn}的通項公式;
(2)求數(shù)列{an•bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=x3-3ax-1,a≠0,
(Ⅰ)當a=2求f(x)在(1,f(1))處的切線方程;
(Ⅱ)若f(x)在x=-1處取得極值,關(guān)于x的方程f(x)=m有3個不同實根,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,某測量人員為了測量西江北岸不能到達的兩點A,B之間的距離,她在西江南岸找到一個點C,從C點可以觀察到點A,B;找到一個點D,從D點可以觀察到點A,C;找到一個點E,從E點可以觀察到點B,C;并測量得到數(shù)據(jù):∠ACD=90°,∠ADC=60°,∠ACB=15°,∠BCE=105°,∠CEB=45°,DC=CE=1百米.
(1)求△CDE的面積;
(2)求A,B之間的距離的平方.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知三角形ABC中滿足條件:(a2+b2)sin(A-B)=(a2-b2)sin(A+B),試判斷該三角形的形狀.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=x2-2mx-3在區(qū)間[1,2]上具有單調(diào)性,則m的取值范圍為
 

查看答案和解析>>

同步練習冊答案