【題目】電視傳媒公司為了了解某地區(qū)電視觀眾對某體育節(jié)目的收視情況,隨機(jī)抽取了100名觀眾進(jìn)行調(diào)查,下面是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該體育節(jié)目時間的頻率分布直方圖:
將日均收看該體育節(jié)目時間不低于40分鐘的觀眾稱為“體育迷”.
(1)根據(jù)已知條件完成下面2×2列聯(lián)表,并據(jù)此資料你是否認(rèn)為“體育迷”與性別有關(guān)?
非體育迷 | 體育迷 | 合計 | |
男 | |||
女 | 10 | 55 | |
合計 |
(2)將上述調(diào)查所得到的頻率視為概率.現(xiàn)在從該地區(qū)大量電視觀眾中,采用隨機(jī)抽樣方法每次抽取1名觀眾,抽取3次,記被抽取的3名觀眾中的“體育迷”人數(shù)為X,若每次抽取的結(jié)果是相互獨立的,求X的分布列,期望E(X)和方差D(X)
P( K2≥k) | 0.05 | 0.01 |
k | 3.841 | 6.635 |
【答案】
(1)
解:由頻率分布直方圖可知,在抽取的100人中,“體育迷”有25人,從而2×2列聯(lián)表如下:
非體育迷 | 體育迷 | 合計 | |
男 | 30 | 15 | 45 |
女 | 45 | 10 | 55 |
合計 | 75 | 25 | 100 |
將2×2列聯(lián)表中的數(shù)據(jù)代入公式計算,得:
K2= = ≈3.03,
因為3.03<3.841,所以沒有理由認(rèn)為“體育迷”與性別有關(guān).
(2)
解:由頻率分布直方圖知抽到“體育迷”的頻率是0.25,將頻率視為概率,即從觀眾中抽取到一名“體育迷”的概率是 ,
由題意X∽B(3, ),從而分布列為
X | 0 | 1 | 2 | 3 |
P |
所以E(X)=np=3× = .D(X)=npq=3× × = .
【解析】(1)根據(jù)所給的頻率分布直方圖得出數(shù)據(jù)列出列聯(lián)表,再代入公式計算得出K2 , 與3.841比較即可得出結(jié)論;(2)由題意,用頻率代替概率可得出從觀眾中抽取到一名“體育迷”的概率是 ,由于X∽B(3, ),從而給出分布列,再由公式計算出期望與方差即可
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在極坐標(biāo)系中有如下三個結(jié)論:①點P在曲線C上,則點P的極坐標(biāo)滿足曲線C的極坐標(biāo)方程;②tan θ=1(ρ≥0)與θ≥0)表示同一條曲線;③ρ=3與ρ=-3表示同一條曲線.其中正確的是( )
A. ①③ B. ① C. ②③ D. ③
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,平面ABCD,底部ABCD為菱形,E為CD的中點.
(Ⅰ)求證:BD⊥平面PAC;
(Ⅱ)若∠ABC=60°,求證:平面PAB⊥平面PAE;
(Ⅲ)棱PB上是否存在點F,使得CF∥平面PAE?說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={x|ax2+2x+1=0,a∈R},
(1)若A只有一個元素,試求a的值,并求出這個元素;
(2)若A是空集,求a的取值范圍;
(3)若A中至多有一個元素,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若二次函數(shù)滿足.且
(1)求的解析式;
(2)若在區(qū)間[-1,1]上不等式恒成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,從A1(1,0,0),A2(2,0,0),B1(0,1,0),B2(0,2,0),C1(0,0,1),C2(0,0,2)這6個點中隨機(jī)選取3個點,將這3個點及原點O兩兩相連構(gòu)成一個“立體”,記該“立體”的體積為隨機(jī)變量V(如果選取的3個點與原點在同一個平面內(nèi),此時“立體”的體積V=0).
(1)求V=0的概率;
(2)求V的分布列及數(shù)學(xué)期望EV.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列推理過程不是演繹推理的是( )
①一切奇數(shù)都不能被2整除,2019是奇數(shù),2019不能被2整除;
②由“正方形面積為邊長的平方”得到結(jié)論:正方體的體積為棱長的立方;
③在數(shù)列中,,由此歸納出的通項公式;
④由“三角形內(nèi)角和為”得到結(jié)論:直角三角形內(nèi)角和為.
A. ①② B. ③④ C. ②③ D. ②④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com